• Title/Summary/Keyword: Voice Analysis

Search Result 1,184, Processing Time 0.022 seconds

Privilege and Immunity of Information and Data from Aviation Safety Program in Unites States (미국 항공안전데이터 프로그램의 비공개 특권과 제재 면제에 관한 연구)

  • Moon, Joon-Jo
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.23 no.2
    • /
    • pp.137-172
    • /
    • 2008
  • The earliest safety data programs, the FDR and CVR, were electronic reporting systems that generate data "automatically." The FDR program, originally instituted in 1958, had no publicly available restrictions for protections against sanctions by the FAA or an airline, although there are agreements and union contracts forbidding the use of FDR data for FAA enforcement actions. This FDR program still has the least formalized protections. With the advent of the CVR program in 1966, the precursor to the current FAR 91.25 was already in place, having been promulgated in 1964. It stated that the FAA would not use CVR data for enforcement actions. In 1982, Congress began restricting the disclosure of the CVR tape and transcripts. Congress added further clarification of the availability of discovery in civil litigation in 1994. Thus, the CVR data have more definitive protections in place than do FDR data. The ASRS was the first non-automatic reporting system; and built into its original design in 1975 was a promise of limited protection from enforcement sanctions. That promise was further codified in an FAR in 1979. As with the CVR, from its inception, the ASRS had some protections built in for the person who might have had a safety problem. However, the program did not (and to this day does not) explicitly deal with issues of use by airlines, litigants, or the public media, although it appears that airlines will either take a non-punitive stance if an ASRS report is filed, or the airline may ignore the fact that it has been filed at all. The FAA worked with several U.S. airlines in the early 1990s on developing ASAP programs, and the FAA issued an Advisory Circular about the program in 1997. From its inception, the ASAP program contained some FAA enforcement protections and company discipline protections, although some protection against litigation disclosure and public disclosure was not added until 2003, when FAA Order 8000.82 was promulgated, placing the program under the protections of FAR 193, which had been added in 2001. The FOQA program, when it was first instituted through a demonstration program in 1995, did not contain protections against sanctions. Now, however, the FAA cannot take enforcement action based on FOQA safety data, and an airline is limited to "corrective action" under the program. Union contracts can exclude FOQA from the realm of disciplinary action, although airline practice may be for airlines to require retraining if there is no contract in place forbidding it. The data is protected against disclosure for litigation and public media purposes by FAA Order 8000.81, issued in 2003, which placed FOQA under the protections of FAR 193. The figure on the next page shows when each program began, and when each statute, regulation, or order became effective for that program.

  • PDF

Case Analysis and Prospect of K-POP Performance Art's Overseas Entry by Joint Venture (K-POP 공연 예술의 합작 투자에 의한 해외 진출 사례 분석 및 전망)

  • Ko, Kyu-Dae
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.191-200
    • /
    • 2020
  • Companies are seeking to maximize profits through exports and imports in the ultra-fast, ultra-high-speed modern society. It is only possible to sustain its survival if it targets the global market, not based on any specific region. The K-POP group is also targeting overseas markets in a manner similar to the various global strategies used when companies make inroads into foreign markets, including exports, contracts and direct investment. The K-POP group is engaged in various forms of activities, ranging from simple forms of performance (export) that are visited and staged by an invitation from a certain foreign country to series performances (license) by an invitation from a local promoter and tour performances using its capabilities. The K-POP group is seeking to go beyond the art of single-stage performances and make a systematic plan and make inroads into foreign countries in the form of direct investment suitable for each foreign country. The K-POP group made inroads into overseas markets in the form of simple performances from the late 1990s to 2005, when 'Korean Wave' was first introduced. Group H.O.T., etc. are typical examples. Since then, it has sought to enter overseas markets in the form of franchises by accepting overseas members by 2018, starting with Super Junior in 2005. Since then, the K-POP group in the form of joint investment attempted as group IZ*ONE in 2018 appeared, and a voice story came out in September 2018 when South Korea's JYP Entertainment and Tencent of China joined forces. Unlike K-POP Group, which has entered foreign markets with a global strategy based on the existing export method (H.O.T.), 'Boystory' is a representative group that is made with joint investment, which is a direct investment method. In February 2020, RBW released 'D1Verse,' a five-member group selected by Vietnam's reality show, as a joint investment-type group. This shows the possibility that domestic and foreign companies will release a group in the form of joint investment in order to pursue both globalization and localization.

The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)

  • Shin, Chang-Hoon;Lee, Ji-Won;Yang, Han-Na;Choi, Il Young
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.19-42
    • /
    • 2012
  • Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.