본 논문에서는 웹 브라우저 상에서 한국어 음성인식을 이용하여 정보검색을 할 수 있는 가변어휘 단어 인식기를 사용한 음성 명령 웹 브라우저에 대하여 기술한다. 이 시스템의 특징은 웹 브라우저 상에서 보여지는 링크를 가지는 HyperText Word들과 웹 브라우저 메뉴를 음성으로 인식할 수 있는 것으로, 마우스 click 뿐만이 아니라 음성인식을 이용하여서도 웹 브라우저를 사용할 수 있다는 것이다. 웹 브라우저를 통해서 보여지는 문서에서 추출되는 인식 후보들은 각 문서에 따라 고정되지 않고 계속하여 변화하므로, 이러한 가변적인 인식 후보들을 인식하기 위해 가변어휘 단어 인식기를 사용하였다. 가변어휘 단어 인식기는 훈련용 음성 데이터와 무관한 임의의 새로운 어휘를 훈련 없이 인식해 낼 수 있는 인식기로 POW (Phonetically Optimized Words) 3,848 단어를 사용하여 훈련한 결과 32단어에 대해 93.8%의 단어 인식률을 보인다. 음성 명령 웹 브라우저는 Windows 95/NT 환경에서 Netscape Navigator를 사용하여 개발되었으며, 사용자가 음성을 사용하는 새로운 인터페이스를 배울 필요 없이 바로 사용할 수 있도록 사용자 편의성 부분도 고려하여 개발되었다. 개발된 음성 명령 웹 브라우저는 환경 독립, 화자 독립에 대해 On-line으로 실험한 결과 평균 90%의 인식성능을 보인다.
어휘 인식 시스템에서는 훈련 중에 적용되지 않는 음소에 대한 문제점으로 인해 시스템에 저장된 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 군집화 방법을 사용하여 유사 음소 모델을 관리하는 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 결정트리 군집화 방법을 적용하여 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하여 모델의 재생성 과정을 줄이고 강인하고 정확한 음향 모델을 제공한다. 또한, 제안된 시스템의 사용으로 시스템에서 기존에 생성되어진 음향 모델에 추가적으로 유사 음소 모델을 생성하여 제공하므로 음성 인식에 강인한 음향 모델을 구성한다. 본 연구에서 제안된 방법으로 실내 환경에 대하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 실내 환경의 어휘 종속 실험에서는 98.3%의 인식 성능을 보였고, 어휘 독립 실험에서 98.4%의 인식 성능을 보였다.
본 논문에서는 음성 인식을 이용한 자동 교환 시스템을 구현하고, 성능을 평가하였다. 이 시스템은 다수의 구성원과 조직 체계를 가지는 관공서나 일반 기업, 학교 등의 교환 서비스를 음성 인식을 통하여 자동으로 제공한다. 본 시스템에 사용된 음성 인식기는 SCHMM(Semi-Continuous Hidden Markov Model) 기반으로 한 전화망에서의 화자 독립 고립 단어 가변 어휘인식기(Speaker-Independent, Isolated-Word, Flexible-Vocabulary Recognizer)이며, 실시간 구현을 위해 사용한 DSP(Digital Signal Processor)는 Texas Instrument 사의 TMS320C32이다. 자동 교환 서비스를 위하여 음성 인식 기능 외에도 음성 인식 DSP 진단 기능과 인식 대상 어휘의 추가 및 변경을 위한 운용 단말을 구현하여 운용의 편의성을 추구하였다. 본 시스템의 인식 실험은 음성 인식 구내 자동 교환 시스템용 1300여 어휘(부서명, 인명 등)에 대해서 8명의 화자가 유선 전화망에서 수행하였으며 인식률은 91.5%이다.
In this paper, we propose a new evaluation methodology which can more clearly show the performance of the allophone modeling algorithm generally used in large vocabulary speech recognition. The proposed evaluation method shows the running characteristics and limitations of the modeling algorithm by testing how the variation of phonetic environments of training data affects the recognition performance and the desirable number of free parameters to be estimated. Using the method, we experiment results, we conclude that, in vocabulary-independent recognition task, the phonetic diversity of training data greatly affects the robustness of model, and it is necessary to develop a proper measure which can determine the number of states compromizing the robustness and the precision of the HMnet better than the conventional modeling efficiency.
The goal of postprocessing in automatic speech recognition is to improve recognition performance by utterance verification at the output of recognition stage. It is focused on the effective rejection of out-of vocabulary words based on the confidence score of hypothesized candidate word. We present two methods for computing confidence scores. Both methods are based on the distance between each observation vector and the representative code vector, which is defined by the most likely code vector at each state. While the first method employs simple time normalization, the second one uses a normalization technique based on the concept of on-line garbage mode[1]. According to the speaker independent isolated words recognition experiment with discrete density HMM, the second method outperforms both the first one and conventional likelihood ratio scoring method[2].
In this paper, we propose a language modeling approach to improve the performance of a large vocabulary continuous speech recognition system. The proposed approach is based on the active learning framework that helps to select a text corpus from a plenty amount of text data required for language modeling. The perplexity is used as a measure for the corpus selection in the active learning. From the recognition experiments on the task of continuous Korean speech, the speech recognition system employing the language model by the proposed language modeling approach reduces the word error rate by about 6.6 % with less computational complexity than that using a language model constructed with randomly selected texts.
This study aims to provide implications for mobile foreign language vocabulary learning app by analyzing the effects of mobile vocabulary learning app based on character animation. For this purpose, we applied the learning application designed with character animation and text, and the application designed with text only to two groups of learners, and analyzed the effect. As a result, we found that application designed with character animation and text was useful in recognition frequency and duration concerning learning. Regarding learning outcomes, we found that it is useful not only in memory but also in learning interest and motivation. This study provides implications for learning method and design development of mobile-based foreign language vocabulary learning application which actively using recently.
본 논문에서는 음성인식 분야에서 많이 사용되고 있는 가변어휘 단어 인식 시스템에서 미등록어에 대한 거절 성능을 향상시키는 방법을 제안한다. 거절 기능을 구현하는 방식은 핵심어 검출(keyword spotting)방식과 발화검증(utterance verification)으로 구분이 된다. 발화 검증 방식은 각 음소마다 이와 유사한 반음소모델(anti-phoneme model)을 생성한 후 정상적인 음소 모델과 반음소 모델의 유사도를 비교하여 결정하는 방식이다. 본 논문에서는 화자가 발성할 때마다 구해지는 화자확인 확률값을 신뢰도 문턱치를 결정할 때 적용하는 방법에 대하여 제안하였다. 제안한 방법을 사용하였을 때, 사무실 환경에서 CA(Correctly Accepted for keyword)가 94.23%, CR(Correctly Rejected for out-of-vocabulary)이 95.11%로 나타났고, 잡음 환경에서는 CA가 91.14%, CR이 92.74%로 나타나서 성능이 향상됨을 확인할 수 있었다.
고립단어 인식기의 오 인식 단어를 거절하기 위한 방법으로 정규화 신뢰도가 제안되어 논문 [1-2]에서 성공적으로 적용된 바 있다. 그러나 정규화 신뢰도의 성능 측정을 위해 고정된 단어 셌을 대상으로 실험을 하였다. 본 논문에서는 정규화 신뢰도를 가변어휘 음성인식 영역에 적용하여 신뢰도의 거절성능을 밝히고 특히, 벡터양자화기를 이용하여 미 출현 트라이 폰의 문제를 극복하는 방법을 제안한다. 이때 정규화 신뢰도는 트라이 폰 신뢰도들의 통계적 특징(평균과 표준편차)을 사용한다. 가변어휘 인식실험 결과음소 단위의 정규화방법이 트라이 폰 기반 정규화방법에 비하여 우수한 성능을 보였으며 이러한 결과는 논문 [1-2]의 결과와는 상이한 것으로 트라이 폰 기반 정규화 방법이 미 출현 트라이 폰에 대하여 강인하지 못하다는 점을 시사하고 있다. 따라서 정규화 신뢰도가 음소 또는 트라이 폰에 상관없이 기준 신뢰도인 RLTC 신뢰도 [3]에 비하여 우수한 성능을 보였으며 가변어휘 인식에서도 동작함을 확인 할 수 있었다.
본 논문에서는 대용량 음성인식 시스템의 인식시간을 감축하기 위하여 후보단어를 선정하는 효과적인 방법을 제안하고 이 방법의 성능을 향상시키기 위하여 spectral smoothing과 temporal smoothing을 사용하는 것에 관하여 연구하였다. 제안된 방법은 사전내의 각 단어에 대하여 음성인식 단위의 음성 spectrum관찰확률과 길이정보를 이용하여 대강의 관찰확률을 계산하여 후보단어를 선정한다. 제안된 방법을 음소단위의 HMM을 이용하는 1160단어 인식 시스템에 적용한 결과, 전체 계산량의 74% 가량을 감축할 수 있었으며 이때 인식율의 감소는 매우 작았다. 또한 제안된 대감의 likelihood점수 계산방법은 Viterbi방법에 의하여 계산되는 likelihood 점수를 잘 추정함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.