• Title/Summary/Keyword: Vocabulary recognition

검색결과 222건 처리시간 0.025초

가변어휘 단어 인식기를 사용한 음성 명령 웹 브라우저 (Voice Command Web Browser Using Variable Vocabulary Word Recognizer)

  • 이항섭
    • 한국음향학회지
    • /
    • 제18권2호
    • /
    • pp.48-52
    • /
    • 1999
  • 본 논문에서는 웹 브라우저 상에서 한국어 음성인식을 이용하여 정보검색을 할 수 있는 가변어휘 단어 인식기를 사용한 음성 명령 웹 브라우저에 대하여 기술한다. 이 시스템의 특징은 웹 브라우저 상에서 보여지는 링크를 가지는 HyperText Word들과 웹 브라우저 메뉴를 음성으로 인식할 수 있는 것으로, 마우스 click 뿐만이 아니라 음성인식을 이용하여서도 웹 브라우저를 사용할 수 있다는 것이다. 웹 브라우저를 통해서 보여지는 문서에서 추출되는 인식 후보들은 각 문서에 따라 고정되지 않고 계속하여 변화하므로, 이러한 가변적인 인식 후보들을 인식하기 위해 가변어휘 단어 인식기를 사용하였다. 가변어휘 단어 인식기는 훈련용 음성 데이터와 무관한 임의의 새로운 어휘를 훈련 없이 인식해 낼 수 있는 인식기로 POW (Phonetically Optimized Words) 3,848 단어를 사용하여 훈련한 결과 32단어에 대해 93.8%의 단어 인식률을 보인다. 음성 명령 웹 브라우저는 Windows 95/NT 환경에서 Netscape Navigator를 사용하여 개발되었으며, 사용자가 음성을 사용하는 새로운 인터페이스를 배울 필요 없이 바로 사용할 수 있도록 사용자 편의성 부분도 고려하여 개발되었다. 개발된 음성 명령 웹 브라우저는 환경 독립, 화자 독립에 대해 On-line으로 실험한 결과 평균 90%의 인식성능을 보인다.

  • PDF

유사 음소 모델 스키마 지원을 위한 결정 트리 (Decision Tree for Likely phoneme model schema support)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제11권10호
    • /
    • pp.367-372
    • /
    • 2013
  • 어휘 인식 시스템에서는 훈련 중에 적용되지 않는 음소에 대한 문제점으로 인해 시스템에 저장된 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 군집화 방법을 사용하여 유사 음소 모델을 관리하는 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 결정트리 군집화 방법을 적용하여 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하여 모델의 재생성 과정을 줄이고 강인하고 정확한 음향 모델을 제공한다. 또한, 제안된 시스템의 사용으로 시스템에서 기존에 생성되어진 음향 모델에 추가적으로 유사 음소 모델을 생성하여 제공하므로 음성 인식에 강인한 음향 모델을 구성한다. 본 연구에서 제안된 방법으로 실내 환경에 대하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 실내 환경의 어휘 종속 실험에서는 98.3%의 인식 성능을 보였고, 어휘 독립 실험에서 98.4%의 인식 성능을 보였다.

자동 교환 시스템을 위한 실시간 음성 인식 구현 (An Implementation of the Real Time Speech Recognition for the Automatic Switching System)

  • 박익현;이재성;김현아;함정표;유승균;강해익;박성현
    • 한국음향학회지
    • /
    • 제19권4호
    • /
    • pp.31-36
    • /
    • 2000
  • 본 논문에서는 음성 인식을 이용한 자동 교환 시스템을 구현하고, 성능을 평가하였다. 이 시스템은 다수의 구성원과 조직 체계를 가지는 관공서나 일반 기업, 학교 등의 교환 서비스를 음성 인식을 통하여 자동으로 제공한다. 본 시스템에 사용된 음성 인식기는 SCHMM(Semi-Continuous Hidden Markov Model) 기반으로 한 전화망에서의 화자 독립 고립 단어 가변 어휘인식기(Speaker-Independent, Isolated-Word, Flexible-Vocabulary Recognizer)이며, 실시간 구현을 위해 사용한 DSP(Digital Signal Processor)는 Texas Instrument 사의 TMS320C32이다. 자동 교환 서비스를 위하여 음성 인식 기능 외에도 음성 인식 DSP 진단 기능과 인식 대상 어휘의 추가 및 변경을 위한 운용 단말을 구현하여 운용의 편의성을 추구하였다. 본 시스템의 인식 실험은 음성 인식 구내 자동 교환 시스템용 1300여 어휘(부서명, 인명 등)에 대해서 8명의 화자가 유선 전화망에서 수행하였으며 인식률은 91.5%이다.

  • PDF

HMnet Evaluation for Phonetic Environment Variations of Traning Data in Speech Recognition

  • Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.28-36
    • /
    • 1996
  • In this paper, we propose a new evaluation methodology which can more clearly show the performance of the allophone modeling algorithm generally used in large vocabulary speech recognition. The proposed evaluation method shows the running characteristics and limitations of the modeling algorithm by testing how the variation of phonetic environments of training data affects the recognition performance and the desirable number of free parameters to be estimated. Using the method, we experiment results, we conclude that, in vocabulary-independent recognition task, the phonetic diversity of training data greatly affects the robustness of model, and it is necessary to develop a proper measure which can determine the number of states compromizing the robustness and the precision of the HMnet better than the conventional modeling efficiency.

  • PDF

New Postprocessing Methods for Rejectin Out-of-Vocabulary Words

  • Song, Myung-Gyu
    • The Journal of the Acoustical Society of Korea
    • /
    • 제16권3E호
    • /
    • pp.19-23
    • /
    • 1997
  • The goal of postprocessing in automatic speech recognition is to improve recognition performance by utterance verification at the output of recognition stage. It is focused on the effective rejection of out-of vocabulary words based on the confidence score of hypothesized candidate word. We present two methods for computing confidence scores. Both methods are based on the distance between each observation vector and the representative code vector, which is defined by the most likely code vector at each state. While the first method employs simple time normalization, the second one uses a normalization technique based on the concept of on-line garbage mode[1]. According to the speaker independent isolated words recognition experiment with discrete density HMM, the second method outperforms both the first one and conventional likelihood ratio scoring method[2].

  • PDF

대용량 연속 음성 인식 시스템에서의 코퍼스 선별 방법에 의한 언어모델 설계 (A Corpus Selection Based Approach to Language Modeling for Large Vocabulary Continuous Speech Recognition)

  • 오유리;윤재삼;김홍국
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 추계 학술대회 발표논문집
    • /
    • pp.103-106
    • /
    • 2005
  • In this paper, we propose a language modeling approach to improve the performance of a large vocabulary continuous speech recognition system. The proposed approach is based on the active learning framework that helps to select a text corpus from a plenty amount of text data required for language modeling. The perplexity is used as a measure for the corpus selection in the active learning. From the recognition experiments on the task of continuous Korean speech, the speech recognition system employing the language model by the proposed language modeling approach reduces the word error rate by about 6.6 % with less computational complexity than that using a language model constructed with randomly selected texts.

  • PDF

캐릭터 애니메이션 기반 모바일 외국어 어휘 학습 앱 효과 분석 (An Analysis on Learning Effects of Character Animation Based-Mobile Foreign Language Vocabulary Learning App)

  • 김인숙;최민서;고혜영
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1526-1533
    • /
    • 2018
  • This study aims to provide implications for mobile foreign language vocabulary learning app by analyzing the effects of mobile vocabulary learning app based on character animation. For this purpose, we applied the learning application designed with character animation and text, and the application designed with text only to two groups of learners, and analyzed the effect. As a result, we found that application designed with character animation and text was useful in recognition frequency and duration concerning learning. Regarding learning outcomes, we found that it is useful not only in memory but also in learning interest and motivation. This study provides implications for learning method and design development of mobile-based foreign language vocabulary learning application which actively using recently.

가변 신뢰도 문턱치를 사용한 미등록어 거절 알고리즘에 대한 연구 (A Study on Out-of-Vocabulary Rejection Algorithms using Variable Confidence Thresholds)

  • 방기덕;강철호
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1471-1479
    • /
    • 2008
  • 본 논문에서는 음성인식 분야에서 많이 사용되고 있는 가변어휘 단어 인식 시스템에서 미등록어에 대한 거절 성능을 향상시키는 방법을 제안한다. 거절 기능을 구현하는 방식은 핵심어 검출(keyword spotting)방식과 발화검증(utterance verification)으로 구분이 된다. 발화 검증 방식은 각 음소마다 이와 유사한 반음소모델(anti-phoneme model)을 생성한 후 정상적인 음소 모델과 반음소 모델의 유사도를 비교하여 결정하는 방식이다. 본 논문에서는 화자가 발성할 때마다 구해지는 화자확인 확률값을 신뢰도 문턱치를 결정할 때 적용하는 방법에 대하여 제안하였다. 제안한 방법을 사용하였을 때, 사무실 환경에서 CA(Correctly Accepted for keyword)가 94.23%, CR(Correctly Rejected for out-of-vocabulary)이 95.11%로 나타났고, 잡음 환경에서는 CA가 91.14%, CR이 92.74%로 나타나서 성능이 향상됨을 확인할 수 있었다.

  • PDF

정규화신뢰도 기반 가변어휘 고립단어 인식기의 거절기능 성능 분석 (Rejection Performance Analysis in Vocabulary Independent Speech Recognition Based on Normalized Confidence Measure)

  • 최승호
    • 한국음향학회지
    • /
    • 제25권2호
    • /
    • pp.96-100
    • /
    • 2006
  • 고립단어 인식기의 오 인식 단어를 거절하기 위한 방법으로 정규화 신뢰도가 제안되어 논문 [1-2]에서 성공적으로 적용된 바 있다. 그러나 정규화 신뢰도의 성능 측정을 위해 고정된 단어 셌을 대상으로 실험을 하였다. 본 논문에서는 정규화 신뢰도를 가변어휘 음성인식 영역에 적용하여 신뢰도의 거절성능을 밝히고 특히, 벡터양자화기를 이용하여 미 출현 트라이 폰의 문제를 극복하는 방법을 제안한다. 이때 정규화 신뢰도는 트라이 폰 신뢰도들의 통계적 특징(평균과 표준편차)을 사용한다. 가변어휘 인식실험 결과음소 단위의 정규화방법이 트라이 폰 기반 정규화방법에 비하여 우수한 성능을 보였으며 이러한 결과는 논문 [1-2]의 결과와는 상이한 것으로 트라이 폰 기반 정규화 방법이 미 출현 트라이 폰에 대하여 강인하지 못하다는 점을 시사하고 있다. 따라서 정규화 신뢰도가 음소 또는 트라이 폰에 상관없이 기준 신뢰도인 RLTC 신뢰도 [3]에 비하여 우수한 성능을 보였으며 가변어휘 인식에서도 동작함을 확인 할 수 있었다.

대용량 음성인식을 위한 인식기간 감축 알고리즘 (A Recognition Time Reduction Algorithm for Large-Vocabulary Speech Recognition)

  • 구준모;은종관
    • 한국음향학회지
    • /
    • 제10권3호
    • /
    • pp.31-36
    • /
    • 1991
  • 본 논문에서는 대용량 음성인식 시스템의 인식시간을 감축하기 위하여 후보단어를 선정하는 효과적인 방법을 제안하고 이 방법의 성능을 향상시키기 위하여 spectral smoothing과 temporal smoothing을 사용하는 것에 관하여 연구하였다. 제안된 방법은 사전내의 각 단어에 대하여 음성인식 단위의 음성 spectrum관찰확률과 길이정보를 이용하여 대강의 관찰확률을 계산하여 후보단어를 선정한다. 제안된 방법을 음소단위의 HMM을 이용하는 1160단어 인식 시스템에 적용한 결과, 전체 계산량의 74% 가량을 감축할 수 있었으며 이때 인식율의 감소는 매우 작았다. 또한 제안된 대감의 likelihood점수 계산방법은 Viterbi방법에 의하여 계산되는 likelihood 점수를 잘 추정함을 알 수 있었다.

  • PDF