• Title/Summary/Keyword: Visualization of sensor information

Search Result 87, Processing Time 0.024 seconds

Techniques for Hazard Analysis of Curved Road Based on USN (굴곡 도로를 위한 USN 기반 위험 분석 기술)

  • Ko, Ik-June;Oh, Byoung-Woo
    • Spatial Information Research
    • /
    • v.17 no.1
    • /
    • pp.25-37
    • /
    • 2009
  • In this paper, we propose techniques for hazard analysis of curved road based on USN. The techniques consist of models and algorithms. Models of curved road, road direction, sensor, vehicle and hazard are proposed. To analyze hazard in curved road and give warning to corresponding vehicle in realtime multi-level algorithms are proposed. An application program implements the models and algorithms to simulate proposed techniques with real-time visualization.

  • PDF

Design of Fine Dust Monitoring System based on the Internet of Things (사물인터넷 기반 미세먼지 모니터링 시스템 설계 및 구현)

  • Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.14-26
    • /
    • 2022
  • Recently, according to the severity of air pollution, interest in air pollution is increasing. The IoT based fine dust monitoring system proposed in this paper allows the measurement and monitoring of fine dust, volatile organic compounds, carbon dioxide, etc., which are the biggest causes affecting the human body among air environmental pollution. The proposed system consisted of a device that measures atmospheric environment information, a server system for storing and analyzing measured information, an integrated monitoring management system for administrators and smart phone applications for users to enable visualization analysis of atmospheric environment information in real time. In addition, the effectiveness of the proposed fine dust monitoring system based on the Internet of Things was verified by using the response speed of the system, the transmission speed of the sensor data, and the measurement error of the sensor. The fine dust monitoring system based on the Internet of Things proposed in this paper is expected to increase user convenience and efficiency of the system by visualizing the air pollution condition after measuring the air environment information with portable fine dust measuring device.

Study of the Radioactive Source Detection and the Visualization with the Stereo Radiation Detector (스테레오 기반 감마선원 탐지 및 가시화에 관한 연구)

  • Park, Gang-teak;Lee, Nam-ho;Cha, Han-ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1100-1102
    • /
    • 2015
  • In the study, stereo-based of gamma-ray sources detector for the space including the gamma-ray source to scan in a raster scan method, and obtains a visible light image and the gamma-ray image. We went to retrieve and visualize the distance to source and the direction of the 3-dimension information from Stereo gamma-ray detectors. Configuration of the detector consisted of gamma-ray detecting sensor for gamma-ray Sources, pan-tilt for the scanning of the raster for detecting sources, and CCD camera for visible-light image. Implement a stereo structure of the device to measure the spatial distribution of source, the gamma-ray Detector and CCD camera for the stereo image acquisition was as each configuration 2. The gamma-ray detector and a visible light camera to revision the distribution of detection source, After performing each of the cameras of the stereo correction and shows the distribution of the gamma-ray Sources through 중첩 visible light image and the gamma-ray image. After Rectification process of Left and right image, we were derived visualization results of the stereo image.

  • PDF

A Study on Stereo Visualization of the X-ray Scanned Image Based on Volume Reconstruction (볼륨기반 X-선 스캔영상의 3차원 형상화 연구)

  • Lee, Nam-Ho;Park, Soon-Yong;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1583-1590
    • /
    • 2011
  • As the existing radiation scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. This research analyzes the applicability of the stereo image processing technique to X-ray scanned images. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. As the radiation image is just a density information of the scanned object, the direct application of the general stereo image processing techniques to it is inefficient. To overcome this limitation of a stereo image processing in radiation area, we reconstruct 3-D shapes of the edges of the objects. Also, we proposed a new volume based 3D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment.

Development of Information Technology Infrastructures through Construction of Big Data Platform for Road Driving Environment Analysis (도로 주행환경 분석을 위한 빅데이터 플랫폼 구축 정보기술 인프라 개발)

  • Jung, In-taek;Chong, Kyu-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.669-678
    • /
    • 2018
  • This study developed information technology infrastructures for building a driving environment analysis platform using various big data, such as vehicle sensing data, public data, etc. First, a small platform server with a parallel structure for big data distribution processing was developed with H/W technology. Next, programs for big data collection/storage, processing/analysis, and information visualization were developed with S/W technology. The collection S/W was developed as a collection interface using Kafka, Flume, and Sqoop. The storage S/W was developed to be divided into a Hadoop distributed file system and Cassandra DB according to the utilization of data. Processing S/W was developed for spatial unit matching and time interval interpolation/aggregation of the collected data by applying the grid index method. An analysis S/W was developed as an analytical tool based on the Zeppelin notebook for the application and evaluation of a development algorithm. Finally, Information Visualization S/W was developed as a Web GIS engine program for providing various driving environment information and visualization. As a result of the performance evaluation, the number of executors, the optimal memory capacity, and number of cores for the development server were derived, and the computation performance was superior to that of the other cloud computing.

The analysis of data structure to digital forensic of dashboard camera (차량용 블랙박스 포렌식을 위한 분석 절차 및 저장 구조 분석)

  • An, Hwihang;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1495-1502
    • /
    • 2015
  • Dashboard camera is important system to store the variable data that not only video but also non-visual information that state of vehicle such as accelerometer, speed, direction. Non-visual information include variable data that can't visualization, so it used important evidence to figure out the situation in accident. It could be missed to non-visual information what can be prove the case in the just digital video forensic procedure. In this paper, We proposal the digital forensic analysis procedure for dashboard camera to all data in dashboard camera extract and analysis data for investigating traffic accident case. And I analyze to some products in with this digital forensic analysis procedure.

Development of an Integrated Monitoring System for the Low and Intermediate Level Radioactive Waste Near-surface Disposal Facility (방사성폐기물 표층처분시설 통합 모니터링 시스템 개발)

  • Se-Ho Choi;HyunGoo Kang;MiJin Kwon;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In this study, the function and purpose of the disposal cover, which is an engineering barrier installed to isolate the disposal vault of the near-surface disposal facility for radioactive waste from natural/man-made intrusion, and the design details of the demonstration facility for performance verification were described. The Demonstration facility was designed in a partially divided form to secure the efficiency of measurement while being the same as the actual size of the surface disposal facility to be built in the Intermediate & low-level radioactive waste disposal site of the Korea Radioactive Waste Agency (KORAD). The instruments used for measurement consist of a multi-point thermometer, FDR (Frequency Domain Reflectometry) sensor, inclinometer, acoustic sensor, flow meter, and meteorological observer. It is used as input data for the monitoring system. The 3D monitoring system was composed of 5 layers using the e-government standard framework, and was developed based on 4 components: screen, control module, service module, and DBIO(DataBase Input Output) module, and connected them to system operation. The monitoring system can provide real-time information on physical changes in the demonstration facility through the collection, analysis, storage, and visualization processes.

UCI Sensor Data Analysis based on Data Visualization (데이터 시각화 기반의 UCI Sensor Data 분석)

  • Chang, Il-Sik;Choi, Hee-jo;Park, Goo-man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.21-24
    • /
    • 2020
  • 대용량의 데이터를 시각적 요소를 활용하여 눈으로 볼 수 있도록 하는 데이터 시각화에 대한 관심이 꾸준히 증가하고 있다. 데이터 시각화는 데이터의 전처리를 거쳐 차원 축소를 하여 데이터의 분포를 시각적으로 확인할 수 있다. 공개된 데이터 셋은 캐글(kaggle), 아마존 AWS 데이터셋(Amazon AWS datasets), UC 얼바인 머신러닝 저장소(UC irvine machine learning repository)등 다양하다. 본 논문에서는 UCI의 화학 가스의 데이터셋을 이용하여 딥러닝을 이용하여 다양한 환경 및 조건에서의 학습을 통한 데이터분석 및 학습 결과가 좋을 경우와 그렇지 않을 경우의 마지막 레이어의 특징 벡터를 시각화하여 직관적인 결과를 확인 가능 하도록 하였다. 또한 다차원 입력 데이터를 시각화 함으로써 시각화 된 결과가 딥러닝의 학습결과와 연관이 있는지를 확인 한다.

  • PDF

Mobile-based Big Data Processing and Monitoring Technology in IoT Environment (IoT 환경에서 모바일 기반 빅데이터 처리 및 모니터링 기술)

  • Lee, Seung-Hae;Kim, Ju-Ho;Shin, Dong-Youn;Shin, Dong-Jin;Park, Jeong-Min;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.1-9
    • /
    • 2018
  • In the fourth industrial revolution, which has become an issue now, we have been able to receive instant analysis results faster than the existing slow speed through various Big Data technologies, and to conduct real-time monitoring on mobile and web. First, various irregular sensor Data is generated using IoT device, Raspberry Pi. Sensor Data is collected in real time, and the collected data is distributed and stored using several nodes. Then, the stored Sensor Data is processed and refined. Visualize and output the analysis result after analysis. By using these methods, we can train the human resources required for Big Data and mobile related fields using IoT, and process data efficiently and quickly. We also provide information that can confirm the reliability of research results through real time monitoring.

Remote Visualization of Radiation Information based on small Semiconductor Sensor Modules (소형 반도체 센서모듈 기반 방사선정보 원격 가시화기술 연구)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Heu, Yong-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.876-879
    • /
    • 2012
  • In this paper we studied the radiation detection technology which described the radiation level distribution in high radiation area with remotely and safely. The designed radiation mapping system was composed of radiation nodes and radiation station. The radiation nodes could sense the radiation dose values with pMOSFET radiation sensors and transmit them to the radiation station. At the radiation station the received radiation values were merged with a geometric information and visualized at the virtual graphic location. For the functional verification of the above system, we attached the radiation nodes to each corner in our laboratory, executed the mapping tests, and confirmed the designed functions finally.

  • PDF