• Title/Summary/Keyword: Visualization of Performance

Search Result 675, Processing Time 0.026 seconds

Development of a CAE Middleware and a Visualization System for Supporting Interoperability of Continuous CAE Analysis Data (연속해석 데이터의 상호운용성을 지원하는 CAE 미들웨어와 가시화 시스템의 개발)

  • Song, In-Ho;Yang, Jeong-Sam;Jo, Hyun-Jei;Choi, Sang-Su
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.85-93
    • /
    • 2010
  • This paper proposes a CAE data translation and visualization technique that can verify time-varying continuous analysis simulation in a virtual reality (VR) environment. In previous research, the use of CAE analysis data has been problematic because of the lack of any interactive simulation controls for visualizing continuous simulation data. Moreover, the research on post-processing methods for real-time verification of CAE analysis data has not been sufficient. We therefore propose a scene graph based visualization method and a post-processing method for supporting interoperability of continuous CAE analysis data. These methods can continuously visualize static analysis data independently of any timeline; it can also continuously visualize dynamic analysis data that varies in relation to the timeline. The visualization system for continuous simulation data, which includes a CAE middleware that interfaces with various formats of CAE analysis data as well as functions for visualizing continuous simulation data and operational functions, enables users to verify simulation results with more realistic scenes. We also use the system to do a performance evaluation with regard to the visualization of continuous simulation data.

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Flame Visualization and Flame Characteristics of Spark Plug with Pre-ignition Chamber (예연소실 점화플러그의 화염가시화와 화염전파특성)

  • Jie, Myoung Seok;Johng, In Tae
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.51-58
    • /
    • 2016
  • New concept spark plug was developed to study its influence on the combustion characteristics of SI engine. It has pre-ignition chamber at the lower end of spark plug and flame hole, in which fresh mixture gas can be put in through the flame hole without any fuel supply system. This spark plug was tested in a single cylinder engine dynamometer for different air fuel ratio to measure the fuel consumption rate, emission gases, and MBT timing. And constant volume combustion chamber was made to understand flame characteristics of spark plug. New spark plug induced fast burn compared to the conventional spark plug and its effects were increased in lean air fuel ratio. Pre-ignition chamber spark plug with 5 holes which had adjusted size was more stable and effective in combustion performance than pre-ignition chamber spark plug with 1 hole. And its effects showed larger differences in lean air fuel ratio than stoichiometric condition. Flame kernel and flame growth process of conventional spark plug and pre-ignition chamber spark plug studied by flame visualization of schlieren method.

Measurement of Bubble Diameter and Rising Velocity in a Cylindrical Tank using an Optical Fiber Probe and a High Speed Visualization Technique (광섬유 탐침과 고속가시화 기법을 이용한 원형탱크 내부의 기포직경 및 상승속도 측정)

  • Kim, Gyurak;Choi, Seong Whan;Kim, Yoon Kee;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.2
    • /
    • pp.14-19
    • /
    • 2012
  • An optical fiber probe system for measuring the local void fraction in the air-water two-phase flow was developed with a 1550 nm light source. Air was injected through a nozzle placed in the center of the bottom wall of a water-filled cylindrical tank. The optical fiber probe having a diameter of $125{\mu}m$ was sufficiently thin to resolve the air-water interface of the bubbly flows. To verify the performance of the optical fiber probe, the synchronized high speed visualization study using a high speed camera was carried out. Comparison between the optical signals and the instantaneous bubble diffraction images confirms that the optical fiber probe is very accurate to measure the void fraction in two-phase flows. The estimated bubble diameter and the rising velocity by the optical fiber probe have 1% and 5% of accuracy, respectively.

Efficient Parallel Visualization of Large-scale Finite Element Analysis Data in Distributed Parallel Computing Environment (분산 병렬 계산환경에 적합한 초대형 유한요소 해석 결과의 효율적 병렬 가시화)

  • Kim, Chang-Sik;Song, You-Me;Kim, Ki-Ook;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.38-45
    • /
    • 2004
  • In this paper, a parallel visualization algorithm is proposed for efficient visualization of the massive data generated from large-scale parallel finite element analysis through investigating the characteristics of parallel rendering methods. The proposed parallel visualization algorithm is designed to be highly compatible with the characteristics of domain-wise computation in parallel finite element analysis by using the sort-last-sparse approach. In the proposed algorithm, the binary tree communication pattern is utilized to reduce the network communication time in image composition routine. Several benchmarking tests are carried out by using the developed in-house software, and the performance of the proposed algorithm is investigated.

Heterogeneous Computation on Mobile Processor for Real-time Signal Processing and Visualization of Optical Coherence Tomography Images

  • Aum, Jaehong;Kim, Ji-hyun;Dong, Sunghee;Jeong, Jichai
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.453-459
    • /
    • 2018
  • We have developed a high-performance signal-processing and image-rendering heterogeneous computation system for optical coherence tomography (OCT) on mobile processor. In this paper, we reveal it by demonstrating real-time OCT image processing using a Snapdragon 800 mobile processor, with the introduction of a heterogeneous image visualization architecture (HIVA) to accelerate the signal-processing and image-visualization procedures. HIVA has been designed to maximize the computational performances of a mobile processor by using a native language compiler, which targets mobile processor, to directly access mobile-processor computing resources and the open computing language (OpenCL) for heterogeneous computation. The developed mobile image processing platform requires only 25 ms to produce an OCT image from $512{\times}1024$ OCT data. This is 617 times faster than the naïve approach without HIVA, which requires more than 15 s. The developed platform can produce 40 OCT images per second, to facilitate real-time mobile OCT image visualization. We believe this study would facilitate the development of portable diagnostic image visualization with medical imaging modality, which requires computationally expensive procedures, using a mobile processor.

Experimental analysis of ventilation performance varying with duct shapes inside reefer container hold (냉동 컨테이너 적재부의 배관 형상에 따른 환기성능 실험)

  • Park, Il-Seouk;Park, Sang-Min;Lee, Dong-Jo;Seol, Sin-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1710-1714
    • /
    • 2004
  • The analysis of ventilation performance varying with duct shapes in reefer container of scale-model has studied experimentally. Most container ships have ventilation system of which ducts extended to the bottom for the purpose of efficient exhausting of condensing heat from hold. However, the size of ducts is so over-long that it causes manufacturing troubles. In this study, for various types of duct, flow visualization using smoke and normalized temperature analysis are presented. Finally, the cooling performance are compared respectively.

  • PDF

Development of a Recursive Local-Correlation PIV Algorithm and Its Performance Test

  • Daichin Daichin;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.75-85
    • /
    • 2001
  • The hierarchic recursive local-correlation PIV algorithm with CBC(correlation based correction) method was developed to increase the spatial resolution of PIV results and to reduce error vectors. This new algorithm was applied to the single-frame and double-frame cross-correlation PIV techniques. In order to evaluate its performance, the recursive algorithm was tested using synthetic images, PIV standard images from Visualization Society of Japan, real flows including ventilation flow inside a vehicle passenger compartment and wake behind a circular cylinder with rib let surface. As a result, most spurious vectors were suppressed by employing CBC method. In addition, the hierarchical recursive correlation algorithm improved largely the sub-pixel accuracy of PIV results by decreasing the interrogation window size, increasing spatial resolution significantly.

  • PDF

(A Study on the Guided Missile Performance Model and the Development of Visual Environments) (유도무기 살상효과 산정 모델 및 시각 환경의 개발)

  • 황흥석;정덕길
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • This research investigates a kill probability model for the performance evaluation of guided missile system, and also develops the user interface implementation for the output of the model based on the visual object-oriented programming application. This paper describes in detail the methodology for the kill probability attained by a missile warhead detonating near an airborne target. The major simulation events used in this research are missile guidance homing point, burst points, and kill mechanism(direct kill, blast kill and fragment kill). For the user interface, we also design and implement the visualization system that can show the graphic style of the kill probability attained by the model. This research will bridge the gap between the sophisticated kill probability model and users who want to see the results interactively with visualization, which can benefit many of other military systems. Some examples are shown, but these will be improved to be better with visual simulation which can visualize all the simulation process of the model.

  • PDF

An Experimental Study on Engine Cooling System Improvement (엔진 냉각 시스템 개선에 관한 실험적 연구)

  • Chon, M.S.;Hwang, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.77-82
    • /
    • 2004
  • This paper describes the improvement of engine cooling system. To improve engine cooling performance, the authors approached in two ways. One is to increase water pump performance, changing of impeller shape and lightening of material were carried out. The second one is cooling efficiency rise, which were investigated with head gasket coolant flow passage optimization with flow visualization technique. The test results show that water pump performance was increased effectively, reduction of pump drive torque, and increase of pump flow-rate and pressure rise. Gasket hole pattern optimization test results represent an optimized head coolant flow which stands cross flow from exhaust to intake port side and small vortex were removed.

  • PDF