• 제목/요약/키워드: Visualization of Performance

Search Result 675, Processing Time 0.027 seconds

The Effect of Visual and Verbal Scaffoldings on Web-Based Problem Solving Performance

  • RHA, Ilju;PARK, Soyoung
    • Educational Technology International
    • /
    • v.11 no.2
    • /
    • pp.1-24
    • /
    • 2010
  • The study aimed to investigate the differential effects of visual and verbal scaffoldings on web-based problem solving performance. A quasi-experiment with 143 high school students in South Korea was administered. Each student's visualization tendency score was obtained at the beginning of the study. Based on the visualization tendency scores, students were divided into two groups; low and high level visualization tendency groups. Then each group was split in half and randomly assigned to one of the two lessons - one with visual scaffolding and the other with verbal scaffolding. The contents of the two lessons were the same. All students' performance was measured through an essay assignment for a problem solving at the end of the lesson. The result showed that the visual scaffolding group outperformed the verbal scaffolding group (F=22.54, p<.01), regardless of each student's visualization tendency level. The effect size was 0.81, indicating high practical significance. There was no statistically significant interaction effect between scaffolding modalities and students' visualization tendency levels. These findings imply that visual scaffolding is an effective strategy to promote students' problem solving performance.

Validity of LIGHTSCAPE As a Visualization Tool for Daylighting Performance (자연채광 성능의 가시화도구로서 LIGHTSCAPE의 유용성 평가)

  • 문기훈;김정태
    • Korean Institute of Interior Design Journal
    • /
    • no.37
    • /
    • pp.110-118
    • /
    • 2003
  • Computer simulation is one of the most useful techniques to predict daylighting performance and present visual image. In architectural and interior design practice, the Lightscape is commonly used often to produce persuasive images rather than physically accurate results. Therefore, this study is to validity the Lightscape as daylighting evaluation tool, in particularly performance and realistically visualization. For the purpose, an evaluation test model (12.0m$\times$7.2m$\times$3.0m) of side lighting window with lightshelf was selected. A 1:6 scale plywood physical model was made. Under clear sky condition, illuminance of 84 Interior point were measured. Lightscape was run on a 750 MHz Pentium PC running Windows 2000 under the same sky condition. And a photography image was compared to rendering image. The physical results of interior illuminance were within 8% between the scale model and Lightscape simulation. There were no differences between the photograph image and rendering image by Lightscape in the sight. Lightscape as visualization tool for daylighting performance was validated.

Analysis and Application of Performance Improvement of a Real-time Simulation Visualization based on Multi-thread Pipelining Parallel Processing (다중 스레드 파이프라인 병렬처리를 통한 실시간 시뮬레이션 시각화의 성능 향상 해석 및 적용)

  • Lee, Jun Hee;Song, Hee Kang;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.13-22
    • /
    • 2017
  • This research proposes and applies a pipelining parallel processing technique to enhance the speed of visualizing the results of real-time simulations. Generally, a simulation with real-time visualization consists of three processes: executing a simulation model, transmitting simulation result, and visualizing simulation result. If we have these processes in serial, the latency from simulation to visualization will be very long, which degrades the speed of visualization of data from real-time simulation. Thus, the main purpose of this research is maximizing performance by adapting pipelining parallel processing technique to the real-time simulation visualization. Also we show that performance is improved by adding multi-threading technique to each process. This paper proposes a theoretical performance model and simulation results of the techniques and then we applied this to an air combat simulation model as a case study. As the result, it shows that the performance is greatly enhanced than the original model's execution time.

Multi-View Supporting VR/AR Visualization System for Supercomputing-based Engineering Analysis Services (슈퍼컴퓨팅 기반의 공학해석 서비스 제공을 위한 멀티 뷰 지원 VR/AR 가시화 시스템 개발)

  • Seo, Dong Woo;Lee, Jae Yeol;Lee, Sang Min;Kim, Jae Seong;Park, Hyung Wook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.428-438
    • /
    • 2013
  • The requirement for high performance visualization of engineering analysis of digital products is increasing since the size of the current analysis problems is more and more complex, which needs high-performance codes as well as high performance computing systems. On the other hand, different companies or customers do not have all the facilities or have difficulties in accessing those computing resources. In this paper, we present a multi-view supporting VR/AR system for providing supercomputing-based engineering analysis services. The proposed system is designed to provide different views supporting VR/AR visualization services depending on the requirement of the customers. It provides a sophisticated VR rendering directly dependent on a supercomputing resource as well as a remotely accessible AR visualization. By providing multi-view centric analysis services, the proposed system can be more easily applied to various customers requiring different levels of high performance computing resources. We will show the scalability and vision of the proposed approach by demonstrating illustrative examples with different levels of complexity.

3D Visualization Approaches for Evaluating Location Solution Performances (시설물 접근성 분석을 위한 GIS의 3차원 시각화 기법 적용)

  • Kim, Young-Hoon;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.21-32
    • /
    • 2003
  • This paper discusses the design of location optimization visualization and feasibility of 3 dimensional visualization techniques. In generic GIS visualization of location analysis, 2 dimensional visualization techniques have been used to map location elements and model solution, such as displaying demand and supply points, drawing connecting lines(e. g. spider line) of optimal locations to their demands, and representing density of location variations. Nevertheless, current GIS and location analysis literatures have little attentions in 3D visualization applications for location optimization problems. Previous research has been neglected 3D visualization of solution performances and its evaluation of solution quality. Consequently, this paper demonstrates potential benefits of 3D visualization techniques and its appropriate GIS applications for location optimization analysis. The visualization effectiveness of 3D approaches is examined in terms of spatial accessibility, and solution performance of optimal location models is evaluated. Finally, this paper proposes extensive 3D visualization perspectives for location analysis and GIS research as a further research agenda.

  • PDF

Design and Implementation of a Scalable Framework for Parallel Program Performance Visualization (병렬 프로그램 성능가시화를 위한 확장성 있는 프레임워크 설계 및 구현)

  • Moon, Sang-Su;Moon, Young-Shik;Kim, Jung-Sun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.2
    • /
    • pp.109-120
    • /
    • 2001
  • In this paper, we propose the design and implementation of a portable, extensible, and efficient performance visualization framework for high performance parallel program development. The framework adopts a layered architecture:consists of three independent layers instrumentation layer, trace interface layer and visualization layer. The instrumentation layer was constructed as an ECL which captures generated events, and the EDL/JPAL constitutes the trace interface layer to provide problem-oriented interfaces between visualization layer and instrumentation layer. Finally, the visualization layer was designed as plug-and-play style for easy elimination, addition and composition of various filters, views and view groups, The proposed performance visualization framework is expected to be used as an independent performance debugging and analysis tool and as a core component in an integrated parallel programming environment.

  • PDF

Study on the Production Process of Performance Arts Visualization Projects: Focused on a Case Analysis of NT Live Cinema Broadcasts (공연예술 영상화 제작과정 연구:NT Live 시네마 브로드캐스트 사례분석을 중심으로)

  • Park, Jin-Won;Kim, Ga-eun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.45-58
    • /
    • 2021
  • This study aims to select representative performance art visualization projects that react to changes in the culture enjoyment methods and needs of contemporary performance art consumers for performance art culture value creation and vitalization that suit the Fourth Industry and a global age, verify new cultural value creation possibilities of performance projects, and look into important matters and keynotes of production processes. Focusing on the report 'NT Live-Digital broadcast of theatre Learning from the pilot season'(2011), a thorough analysis was conducted on the Royal National Theatre of England, a leading model of cinema broadcast performance visualization projects, including the purpose, production processes (copyright agreements, personnel compositions, filming and broadcasting), marketing methods, and audiences of its "NT Live" project and observations were made of production processes and cultural and artistic values that differ from existing performance art to examine administrative and financial keynotes for the sustainability of performance visualization projects. Through this, possibilities of source creations with artistic, cultural, and economic values that cinema broadcast (live performance broadcast) performance viewing methods have as a new form of performance art products can be verified. In addition, the development of various performance approaches that respond to the culture enjoyment methods and consumption patterns of audiences will result in the vitalization of performing arts visualization projects through the enhancement of popular appeal and the expansion of audience types of the performing arts field.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

Performance Evaluation of Rotational Flow of a 2×2 Microfluidic Centrifuge with varying Inlet Conditions and Chamber Sizes (마이크로 유체 원심분리기의 입구 조건과 챔버 크기에 따른 회전 유동 성능 평가)

  • Jeon, Hyeong Jin;Kwon, Bong Hyun;Kim, Dae Il;Kim, Hyung Hoon;Go, Jeung Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • This paper describes the measurement of performance evaluation of rotational flow varying chamber size and Reynolds number. Through the experimental visualization of the flow rotation, the number and position of flow rotation in the $2{\times}2$ microfluidic centrifuge were examined. At a chamber width of 250${\mu}m$, single flow rotation was obtained over at a Reynolds number of 300, while at a chamber width of 500 ${\mu}m$, single flow rotation did not appear. For performance evaluation, the intensity in microchamber was measured during 20 sec. At a chamber width of 250 ${\mu}m$, performance of rotational flow increased as Reynolds number increased. However, the variation of intensity in microchamber remained unchanged at a chamber width of 500 ${\mu}m$. The numerical analysis showed that the threshold centrifugal acceleration to obtain rotational flow for ejected particles was 200g.

Tracing Facility for Visualization system of Distributed Java Object Application

  • Lee, Dong-Woo;R.S. Ramakrishna
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10c
    • /
    • pp.783-785
    • /
    • 1999
  • Distributed Object Systems are very complex. So, it is difficult to see overall relationship among objects participated in the system. Moreover the performance tuning or maintenance are also important issues of it. So, it needs a way to view the system with low-cost and an efficient method. One of solutions is a visualization tool or system. In this paper, we proposed a tracing facility for Java-based distributed object system, especially RM(Remote Method Invocation). Our up-coming visualization system will use two phase hybrid post-mortem/on-the-fly technique. To support it, the fundamental tracing part must have some flexible and dynamic mechanism. The main idea of our tracing technique is the Plug-in Sensor Model(PSM). The relationship between tracing (monitoring) part and visualization part is closely related. So, we considered the appropriate factors for visualization. We developed 'Traced RMI(TRMI)'. For more precise visualization of a working system, the casuality of events has to be preserved. TRMI can support global event ordering.

  • PDF