• Title/Summary/Keyword: Visualization Model

Search Result 1,067, Processing Time 0.025 seconds

Flow Visualization Model Based on B-spline Volume (비스플라인 부피에 기초한 유동 가시화 모델)

  • 박상근;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 1997
  • Scientific volume visualization addresses the representation, manipulation, and rendering of volumetric data sets, providing mechanisms for looking closely into structures and understanding their complexity and dynamics. In the past several years, a tremendous amount of research and development has been directed toward algorithms and data modeling methods for a scientific data visualization. But there has been very little work on developing a mathematical volume model that feeds this visualization. Especially, in flow visualization, the volume model has long been required as a guidance to display the very large amounts of data resulting from numerical simulations. In this paper, we focus on the mathematical representation of volumetric data sets and the method of extracting meaningful information from the derived volume model. For this purpose, a B-spline volume is extended to a high dimensional trivariate model which is called as a flow visualization model in this paper. Two three-dimensional examples are presented to demonstrate the capabilities of this model.

  • PDF

Visual Dynamics Model for 3D Text Visualization

  • Lim, Sooyeon
    • International Journal of Contents
    • /
    • v.14 no.4
    • /
    • pp.86-91
    • /
    • 2018
  • Text has evolved along with the history of art as a means of communicating human intentions and emotions. In addition, text visualization artworks have been combined with the social form and contents of new media to produce social messages and related meanings. Recently, in text visualization artworks combined with digital media, communication forms with viewers are changing instantly and interactively, and viewers are actively participating in creating artworks by direct engagement. Interactive text visualization with additional viewer's interaction, generates external dynamics from text shapes and internal dynamics from embedded meanings of text. The purpose of this study is to propose a visual dynamics model to express the dynamics of text and to implement a text visualization system based on the model. It uses the deconstruction of the imaged text to create an interactive text visualization system that reacts to the gestures of the viewer in real time. Visual Transformation synchronized with the intentions of the viewer prevent the text from remaining in the interpretation of language symbols and extend the various meanings of the text. The visualized text in various forms shows visual dynamics that interpret the meaning according to the cultural background of the viewer.

The Alternatives of Communication Model and Geographic Visualization (커뮤니케이션 이론에 대한 대안과 지리적 시각화)

  • Son, Ill
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.27-41
    • /
    • 1998
  • The communication model has been accepted as the basic research paradigm of cartography since Board(1967) discussed the map/model analogy. In that paradigm, the function of maps was limited to the media of communication, and the functionality of maps was extremely emphasized. Therefore the model could not play its own role under the new environments such as computer, GIS, scientific visualization. Nowadays, the model has been attacked on several grounds and several alternatives have been suggested. Among the objections raised are (1) geographic visualization in which maps are considered as the tool of scientific visualization, (2) the contributions of art which are ignored in the positivist cartographic research, and (3) deconstructionist arguments which deny the scientific epistemology of map as an objective form of knowledge and recognize the textuality of maps including their metaphorical and rhetorical nature. Since a publication by McCormick et al, the scientific visualization based on the powerful computer graphics is used in a wide context. Maps are treated as the tools of scientific visualization and emphasis is on exploration of the geographic data to gain understanding and insight in the geographic visualization processes. The research on geographic visualization have stayed in the early stage of developing the conceptual model and the basic visualization tools. But, it is expected that the geographic or visual thinking which is emphasized in the geographic visualization will contribute the reestablishment of links between cartography and geography. Also, the development of scientific visualization tools and strategies will offer the opportunities to suggest a fresh idea, to synthesize information and develop holistic approaches to geographical problems.

  • PDF

Visualization of Vortex Tube near Submerged Nozzle in Simulator of Solid Rocket Motor (고체로켓 모사장치 내삽노즐 주위의 와류튜브 가시화)

  • Kim, Dohun;Shin, Bongki;Son, Min;Koo, Jaye;Kang, Moonjung;Chang, Hongbeen
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.34-40
    • /
    • 2013
  • A flow visualization near submerged nozzle of solid rocket motor was conducted by experiments. A numerical simulation was also performed to reveal detailed phenomena. Radial cold flow simulating hot gas was introduced by a porous grain model which was manufactured by perforated steel plates. The grain model was mounted in high-pressure chamber which has quartz glass at the top of the grain model. From the high-speed images, a rotating vortex was observed and the two type of counter-rotating momentums were generated in numerical results. The rotating momentum was generated at the fin-slot grain because of unbalance between high-velocity flow from slots and low-velocity flow from fin-bases. As a result, roll torques can be produced by the rotating vortex tube.

A Design and Implementation of Worker Motion 3D Visualization Module Based on Human Sensor

  • Sejong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.109-114
    • /
    • 2024
  • In this paper, we design and implement a worker motion 3D visualization module based on human sensors. The three key modules that make up this system are Human Sensor Implementation, Data Set Creation, and Visualization. Human Sensor Implementation provides the functions of setting and installing the human sensor locations and collecting worker motion data through the human sensors. Data Set Creation offers functions for converting and storing motion data, creating near real-time worker motion data sets, and processing and managing sensor and motion data sets. Visualization provides functions for visualizing the worker's 3D model, evaluating motions, calculating loads, and managing large-scale data. In worker 3D model visualization, motion data sets (Skeleton & Position) are synchronized and mapped to the worker's 3D model, and the worker's 3D model motion animation is visualized by combining the worker's 3D model with analysis results. The human sensor-based worker motion 3D visualization module designed and implemented in this paper can be widely utilized as a foundational technology in the smart factory field in the future.

Improving Explainability of Generative Pre-trained Transformer Model for Classification of Construction Accident Types: Validation of Saliency Visualization

  • Byunghee YOO;Yuncheul WOO;Jinwoo KIM;Moonseo PARK;Changbum Ryan AHN
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1284-1284
    • /
    • 2024
  • Leveraging large language models and safety accident report data has unique potential for analyzing construction accidents, including the classification of accident types, injured parts, and work processes, using unstructured free text accident scenarios. We previously proposed a novel approach that harnesses the power of fine-tuned Generative Pre-trained Transformer to classify 6 types of construction accidents (caught-in-between, cuts, falls, struck-by, trips, and other) with an accuracy of 82.33%. Furthermore, we proposed a novel methodology, saliency visualization, to discern which words are deemed important by black box models within a sentence associated with construction accidents. It helps understand how individual words in an input sentence affect the final output and seeks to make the model's prediction accuracy more understandable and interpretable for users. This involves deliberately altering the position of words within a sentence to reveal their specific roles in shaping the overall output. However, the validation of saliency visualization results remains insufficient and needs further analysis. In this context, this study aims to qualitatively validate the effectiveness of saliency visualization methods. In the exploration of saliency visualization, the elements with the highest importance scores were qualitatively validated against the construction accident risk factors (e.g., "the 4m pipe," "ear," "to extract staircase") emerging from Construction Safety Management's Integrated Information data scenarios provided by the Ministry of Land, Infrastructure, and Transport, Republic of Korea. Additionally, construction accident precursors (e.g., "grinding," "pipe," "slippery floor") identified from existing literature, which are early indicators or warning signs of potential accidents, were compared with the words with the highest importance scores of saliency visualization. We observed that the words from the saliency visualization are included in the pre-identified accident precursors and risk factors. This study highlights how employing saliency visualization enhances the interpretability of models based on large language processing, providing valuable insights into the underlying causes driving accident predictions.

Scientific Visualization of Oceanic Data (GIS정보를 이용한 해양자료의 과학적 가시화)

  • Im, Hyo-Hyuc;Kim, Hyeon-Seong;Han, Sang-Cheon;Seong, Ha-Keun;Kim, Kye-Yeong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.195-196
    • /
    • 2006
  • Recently, there are increasing need to make a synthetic assessment about oceanic data which is collected over the various scientific field, in addition to just gathering oceanic data. In this study, we made a basic map using satellite image, aerial photo, multi-beam data, geological stratum data etc. And as well we are producing comprehensive SVT(Scientific Visualization Toolkit) which can visualize various kinds of oceanic data. These oceanic data include both survey data such as tidal height, tide, current, wave, water temperature, salinity, oceanic weather data and numeric modelling results such as ocean hydrodynamic model, wave model, erosion/sediment model, thermal discharged coastal water model, ocean water quality model. In this process, we introduce GIS(Geographic Information System) concepts to reflect time and spatial characteristics of oceanic data.

  • PDF

A Study on Atmospheric Environment Visualization by Integrating 3D City Model and CFD Model (3D City모델과 CFD 모델을 통합한 대기환경 시각화 연구)

  • An, Seung-Man;Lee, Ho-Yeong;Sung, Hyo-Hyun;Choi, Yeong-Jin;Woo, Jung-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • The purpose of this study is enhancing CFD model by applying detailed and accurate CFD input data produced from 3D City model and integrating CFD model with 3D city model with OpenGL, 3D city aerodynamic simulation, and visualization tool. CFD_NIMR_SNU model developed by NIMR and SNU and 3D City model produced by NGII were used as input data. Wind flow and pollution diffusion simulator and viewer were developed in this study. Atmospheric environment simulation and visualization tool will save time and cost for urban climate planning and management by enhancing visual communication.

Flow Visualization on the Bio-Mimic Model of Dragonfly (잠자리 모사 모형 주변의 유동가시화 실험)

  • Yun, Jun-Yong;Uhm, Sang-Jin;Ji, Young-Moo;Park, Jun-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.16-22
    • /
    • 2010
  • A flow visualization has been conducted to investigate unsteady flight characteristics of a model of dragonfly. The mechanism of lift generation by flapping wings is analyzed using smoke-wire and high speed camera. The experimental results of flow visualization show a discernible sequential dynamics that three mechanisms and high incidence angle of the wings are responsible for the lift generation. The leading edge vortex by the rapid acceleration of leading edge of the wing during initial stage of stroke causes a strong lift enhancement. Delayed stall during the stroke, fast supination and pronation of the wing near the end of each stroke are also responsible for the lift generation.

A Design of A Dynamic Configurational Multimedia Spreadsheet for Effective HCI (효과적인 HCI를 위한 동적 재구성 멀티미디어 스프레드쉬트 설계)

  • Jee Sung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.14-22
    • /
    • 2006
  • The multimedia visualizational spreadsheet environment is shown to be extremely effective in supporting the organized visualization of multi-dimensional data sets. In this paper, we designed the visualization model that consists of the configurational 2D arrangement of spreadsheet elements at run time and each spreadsheet element has a novel framestack. As the feature, it supports 3D data structure of each element on the proposed model. It enables the visualization spreadsheet 1) to effectively manage, organize, and compactly encapsulate multi-dimensional data sets, 2) to reconfigure cell-structures dynamically according to client request, and 3) to rapidly process interactive user interface. Using several experiments with scientific users, the model has been demonstrated to be a highly interactive visual browsing tool for 2D and 3D graphics and rendering in each frame.

  • PDF