• Title/Summary/Keyword: Visual Reconstruction

Search Result 218, Processing Time 0.029 seconds

Essential Computer Vision Methods for Maximal Visual Quality of Experience on Augmented Reality

  • Heo, Suwoong;Song, Hyewon;Kim, Jinwoo;Nguyen, Anh-Duc;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • The augmented reality is the environment which consists of real-world view and information drawn by computer. Since the image which user can see through augmented reality device is a synthetic image composed by real-view and virtual image, it is important to make the virtual image generated by computer well harmonized with real-view image. In this paper, we present reviews of several works about computer vision and graphics methods which give user realistic augmented reality experience. To generate visually harmonized synthetic image which consists of a real and a virtual image, 3D geometry and environmental information such as lighting or material surface reflectivity should be known by the computer. There are lots of computer vision methods which aim to estimate those. We introduce some of the approaches related to acquiring geometric information, lighting environment and material surface properties using monocular or multi-view images. We expect that this paper gives reader's intuition of the computer vision methods for providing a realistic augmented reality experience.

The Study of Mobile Robot Self-displacement Recognition Using Stereo Vision (스테레오 비젼을 이용한 이동로봇의 자기-이동변위인식 시스템에 관한 연구)

  • 심성준;고덕현;김규로;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.934-937
    • /
    • 2003
  • In this paper, authors use a stereo vision system based on the visual model of human and establish inexpensive method that recognizes moving distance using characteristic points around the robot. With the stereovision. the changes of the coordinate values of the characteristic points that are fixed around the robot are measured. Self-displacement and self-localization recognition system is proposed from coordination reconstruction with those changes. To evaluate the proposed system, several characteristic points that is made with a LED around the robot and two cheap USB PC cameras are used. The mobile robot measures the coordinate value of each characteristic point at its initial position. After moving, the robot measures the coordinate values of the characteristic points those are set at the initial position. The mobile robot compares the changes of these several coordinate values and converts transformation matrix from these coordinate changes. As a matrix of the amount and the direction of moving displacement of the mobile robot, the obtained transformation matrix represents self-displacement and self-localization by the environment.

  • PDF

Design and Performance Analysis of Adaptive Pseudomedian Filter for Digital Image Enlargement (디지털 영상 확대를 위한 적응형 Pseudomedian 필터의 설계 및 성능 분석)

  • Gwak, No-Yun;Hwang, Byeong-Won
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1305-1315
    • /
    • 2000
  • It is known that a digital image enlargement technique can increase the size of he image but the practical enhancement of resolution is trifle because the frequency bandwidth of the original image is basically limited. To solve this problem, this paper proposes the digital image enlargement technique which interpolates the interpolation points of horizontal and vertical direction by weighting according to the direction of edge information with the component of FOI(First Order Interpolation)and output of the pseudomedian filter for image enlargement and interpolates the interpolation points of diagonal direction by selectively transposing the direction of the subwindows of the pseudomedian filter according to the distribution of neighbored pixels thereto in the extended image. According to the proposed methods, the digital image enlargement which preserves the characteristic of the pseudomedian filter capable of keeping the reconstruction of edge information and reflects the advantage of FOI can be performed. Therefore, visual artifacts could be effectively suppressed, and most characteristics and shape of the original image can be reconstructed as well.

  • PDF

Robust Features and Accurate Inliers Detection Framework: Application to Stereo Ego-motion Estimation

  • MIN, Haigen;ZHAO, Xiangmo;XU, Zhigang;ZHANG, Licheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.302-320
    • /
    • 2017
  • In this paper, an innovative robust feature detection and matching strategy for visual odometry based on stereo image sequence is proposed. First, a sparse multiscale 2D local invariant feature detection and description algorithm AKAZE is adopted to extract the interest points. A robust feature matching strategy is introduced to match AKAZE descriptors. In order to remove the outliers which are mismatched features or on dynamic objects, an improved random sample consensus outlier rejection scheme is presented. Thus the proposed method can be applied to dynamic environment. Then, geometric constraints are incorporated into the motion estimation without time-consuming 3-dimensional scene reconstruction. Last, an iterated sigma point Kalman Filter is adopted to refine the motion results. The presented ego-motion scheme is applied to benchmark datasets and compared with state-of-the-art approaches with data captured on campus in a considerably cluttered environment, where the superiorities are proved.

Block Sparse Low-rank Matrix Decomposition based Visual Defect Inspection of Rail Track Surfaces

  • Zhang, Linna;Chen, Shiming;Cen, Yigang;Cen, Yi;Wang, Hengyou;Zeng, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6043-6062
    • /
    • 2019
  • Low-rank matrix decomposition has shown its capability in many applications such as image in-painting, de-noising, background reconstruction and defect detection etc. In this paper, we consider the texture background of rail track images and the sparse foreground of the defects to construct a low-rank matrix decomposition model with block sparsity for defect inspection of rail tracks, which jointly minimizes the nuclear norm and the 2-1 norm. Similar to ADM, an alternative method is proposed in this study to solve the optimization problem. After image decomposition, the defect areas in the resulting low-rank image will form dark stripes that horizontally cross the entire image, indicating the preciselocations of the defects. Finally, a two-stage defect extraction method is proposed to locate the defect areas. The experimental results of the two datasets show that our algorithm achieved better performance compared with other methods.

A Dehazing Algorithm using the Prediction of Adaptive Transmission Map for Each Pixel (화소 단위 적응적 전달량 예측을 이용한 효율적인 안개 제거 기술)

  • Lee, Sang-Won;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.118-127
    • /
    • 2017
  • We propose the dehazing algorithm which consists of two main parts, the derivation of the Atmospheric light and adaptive transmission map. In the getting the Atmospheric light value, we utilize the quad-tree partitioning where the depth of the partitioning is decided based on the difference between the averaged pixel values of the parent and children blocks. The proposed transmission map is adaptive for each pixel by using the parameter ${\beta}(x)$ to make the histogram of the pixel values in the map uniform. The simulation results showed that the proposed algorithm outperforms the conventional methods in the respect of the visual quality of the dehazed images and the computational complexity.

Methodological Comparison of Visualization for Tele-operated Robot Visual Guidance (원격 로봇 비주얼 가이던스를 위한 가상벽 가시화 방법론 비교)

  • Kim, Dong Yeop;Shin, Dong-In;Hwang, Jung-Hoon;Kim, Young-Ouk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.877-882
    • /
    • 2016
  • Disaster robots have accepted tele-operation in order to share the intelligence of human operators and robot systems. Virtual wall is one of the tele-operation technology to support recognition of human operator. If the virtual wall can block the robot from dangers, the operator will feel comfortable and can concentrate on fundamental missions. In this paper, we proposes and compares three methods for virtual wall visualization in tele-operation using 3D reconstruction. First is a virtual wall visualized only with edges. A wall filled with transparent color is the second method. Finally, third method is a texture-mapped virtual wall. In the experiments, we discuss their merits and demerits in view of robot tele-operation.

Reconstruction of Large Orbital Floor Defect Caused by Maxillary Sinus Mucocele

  • Pyo, Seung Bum;Song, Jin Kyung;Ju, Hong Sil;Lim, Seong Yoon
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.3
    • /
    • pp.197-201
    • /
    • 2017
  • Maxillary sinus mucocele can occur due to many medical factors such as chronic infection, allergic sinonasal disease, trauma, and previous surgery. However, it occurs mainly after Caldwell-Luc operation, usually more than 10 years after surgery. There are a few cases of maxillary sinus mucocele with ocular symptoms. Also, a case causing ocular symptoms because of invasion to the orbital floor is rare. Therefore, we report a case of a 55-year-old male patient who underwent Caldwell-Luc operation about 30 years ago. Then, symptoms such as exophthalmos, diplopia, and visual disturbance developed suddenly 3 months prior to admission. Computed tomography showed a cyst invading the orbital floor which resulted in eyeball deviation. The orbital floor defect measured approximately $2.5{\times}3.3cm$. Maxillary sinus mucocele was removed through an endoscopic approach. After this, we reconstructed the orbital floor through a subciliary incision. Observation was carried out after three years, and ocular symptoms such as diplopia and exophthalmos did not recur.

A Visual Reconstruction of Core Algorithm for Image Compression Based on the DCT (discrete cosine transform) (이산코사인변환 기반 이미지 압축 핵심 알고리즘 시각적 재구성)

  • Jin, Chan-yong;Nam, Soo-tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.180-181
    • /
    • 2018
  • JPEG is a most widely used standard image compression technology. This research introduces the JPEG image compression algorithm and describes each step in the compression and decompression. Image compression is the application of data compression on digital images. The DCT (discrete cosine transform) is a technique for converting a time domain to a frequency domain. First, the image is divided into 8 by 8 pixel blocks. Second, working from top to bottom left to right, the DCT is applied to each block. Third, each block is compressed through quantization. Fourth, the array of compressed blocks that make up the image is stored in a greatly reduced amount of space. Finally if desired, the image is reconstructed through decompression, a process using IDCT (inverse discrete cosine transform).

  • PDF

A Digital Hologram Encryption Method Using Data Scrambling of Frequency Coefficients

  • Choi, Hyun-Jun
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.185-189
    • /
    • 2013
  • A digital hologram generated by a computer calculation (computer-generated hologram or capture using charge-coupled device [CCD] camera) is one of the most expensive types of content, and its usage is expanding. Thus, it is highly necessary to protect the ownership of digital holograms. This paper presents an efficient visual security scheme for holographic image reconstruction with a low scrambling cost. Most recent studies on optical security concentrate their focus on security authentication using optical characteristics. However, in this paper, we propose an efficient scrambling method to protect a digital hologram. Therefore, we introduce in this paper several scrambling attempts in both the spatial domain and frequency domain on the basis of the results of analyzing the properties of the coefficients in each domain. To effectively hide the image information, 1/4, 1/256, and 1/16,384 of the original digital hologram needs to be scrambled for the spatial-domain scheme, Fresnel-domain scheme, and discrete cosine transform-domain scheme, respectively. The encryption schemes and the analyses in this paper can be expected to be useful in the research on encryption and other works on digital holograms.