• Title/Summary/Keyword: Visual Localization

Search Result 145, Processing Time 0.027 seconds

Localization of a Tracked Robot Based on Fuzzy Fusion of Wheel Odometry and Visual Odometry in Indoor and Outdoor Environments (실내외 환경에서 휠 오도메트리와 비주얼 오도메트리 정보의 퍼지 융합에 기반한 궤도로봇의 위치추정)

  • Ham, Hyeong-Ha;Hong, Sung-Ho;Song, Jae-Bok;Baek, Joo-Hyun;Ryu, Jae-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.629-635
    • /
    • 2012
  • Tracked robots usually have poor localization performance because of slippage of their tracks. This study proposes a new localization method for tracked robots that uses fuzzy fusion of stereo-camera-based visual odometry and encoder-based wheel odometry. Visual odometry can be inaccurate when an insufficient number of visual features are available, while the encoder is prone to accumulating errors when large slips occur. To combine these two methods, the weight of each method was controlled by a fuzzy decision depending on the surrounding environment. The experimental results show that the proposed scheme improved the localization performance of a tracked robot.

The Implementation of Real-Time Speaker Localization Using Multi-Modality (멀티모달러티를 이용한 실시간 음원추적 시스템 구현)

  • Park, Jeong-Ok;Na, Seung-You;Kim, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.459-461
    • /
    • 2004
  • This paper presents an implementation of real-time speaker localization using audio-visual information. Four channels of microphone signals are processed to detect vertical as well as horizontal speaker positions. At first short-time average magnitude difference function(AMDF) signals are used to determine whether the microphone signals are human voices or not. And then the orientation and distance information of the sound sources can be obtained through interaural time difference and interaual level differences. Finally visual information by a camera helps get finer tuning of the speaker orientation. Experimental results of the real-time localization system show that the performance improves to 99.6% compared to the rate of 88.8% when only the audio information is used.

  • PDF

Audio-Visual Localization and Tracking of Sound Sources Using Kalman Filter (칼만 필터를 이용한 시청각 음원 정위 및 추적)

  • Song, Min-Gyu;Kim, Jin-Young;Na, Seung-You
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.519-525
    • /
    • 2007
  • With the high interest on robot technology and application, the research on artificial auditory systems for robot is very active. In this paper we discuss sound source localization and tracing based on audio-visual information. For video signals we use face detection based on skin color model. Also, binaural-based DOA is used as audio information. We integrate both informations using Kalman filter. The experimental results show that audio-visual person tracking Is useful, specially in the case that some informations are not observed.

Human Spatial Cognition Using Visual and Auditory Stimulation

  • Yu, Mi;Piao, Yong-Jun;Kim, Yong-Yook;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.41-45
    • /
    • 2006
  • This paper deals with human spatial cognition using visual and auditory stimulation. More specially, this investigation is to observe the relationship between the head and the eye motor system for the localization of visual target direction in space and to try to describe what is the role of right-side versus left-side pinna. In the experiment of visual stimulation, nineteen red LEDs (Luminescent Diodes, Brightness: $210\;cd/^2$) arrayed in the horizontal plane of the surrounding panel are used. Here the LEDs are located 10 degrees apart from each other. Physiological parameters such as EOG (Electro-Oculography), head movement, and their synergic control are measured by BIOPAC system and 3SPACE FASTRAK. In the experiment of auditory stimulation, one side of the pinna function was distorted intentionally by inserting a short tube in the ear canal. The localization error caused by right and left side pinna distortion was investigated as well. Since a laser pointer showed much less error (0.5%) in localizing target position than FASTRAK (30%) that has been generally used, a laser pointer was used for the pointing task. It was found that harmonic components were not essential for auditory target localization. However, non-harmonic nearby frequency components was found to be more important in localizing the target direction of sound. We have found that the right pinna carries out one of the most important functions in localizing target direction and pure tone with only one frequency component is confusing to be localized. It was also found that the latency time is shorter in self moved tracking (SMT) than eye alone tracking (EAT) and eye hand tracking (EHT). These results can be used in further study on the characterization of human spatial cognition.

Analysis of Applicability of Visual SLAM for Indoor Positioning in the Building Construction Site (Visual SLAM의 건설현장 실내 측위 활용성 분석)

  • Kim, Taejin;Park, Jiwon;Lee, Byoungmin;Bae, Kangmin;Yoon, Sebeen;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.47-48
    • /
    • 2022
  • The positioning technology that measures the position of a person or object is a key technology to deal with the location of the real coordinate system or converge the real and virtual worlds, such as digital twins, augmented reality, virtual reality, and autonomous driving. In estimating the location of a person or object at an indoor construction site, there are restrictions that it is impossible to receive location information from the outside, the communication infrastructure is insufficient, and it is difficult to install additional devices. Therefore, this study tested the direct sparse odometry algorithm, one of the visual Simultaneous Localization and Mapping (vSLAM) that estimate the current location and surrounding map using only image information, at an indoor construction site and analyzed its applicability as an indoor positioning technology. As a result, it was found that it is possible to properly estimate the surrounding map and the current location even in the indoor construction site, which has relatively few feature points. The results of this study can be used as reference data for researchers related to indoor positioning technology for construction sites in the future.

  • PDF

Audio-Visual Fusion for Sound Source Localization and Improved Attention (음성-영상 융합 음원 방향 추정 및 사람 찾기 기술)

  • Lee, Byoung-Gi;Choi, Jong-Suk;Yoon, Sang-Suk;Choi, Mun-Taek;Kim, Mun-Sang;Kim, Dai-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.737-743
    • /
    • 2011
  • Service robots are equipped with various sensors such as vision camera, sonar sensor, laser scanner, and microphones. Although these sensors have their own functions, some of them can be made to work together and perform more complicated functions. AudioFvisual fusion is a typical and powerful combination of audio and video sensors, because audio information is complementary to visual information and vice versa. Human beings also mainly depend on visual and auditory information in their daily life. In this paper, we conduct two studies using audioFvision fusion: one is on enhancing the performance of sound localization, and the other is on improving robot attention through sound localization and face detection.

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

Real-Time Precision Vehicle Localization Using Numerical Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.968-978
    • /
    • 2014
  • Autonomous vehicle technology based on information technology and software will lead the automotive industry in the near future. Vehicle localization technology is a core expertise geared toward developing autonomous vehicles and will provide location information for control and decision. This paper proposes an effective vision-based localization technology to be applied to autonomous vehicles. In particular, the proposed technology makes use of numerical maps that are widely used in the field of geographic information systems and that have already been built in advance. Optimum vehicle ego-motion estimation and road marking feature extraction techniques are adopted and then combined by an extended Kalman filter and particle filter to make up the localization technology. The implementation results of this paper show remarkable results; namely, an 18 ms mean processing time and 10 cm location error. In addition, autonomous driving and parking are successfully completed with an unmanned vehicle within a $300m{\times}500m$ space.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

Map-Building and Position Estimation based on Multi-Sensor Fusion for Mobile Robot Navigation in an Unknown Environment (이동로봇의 자율주행을 위한 다중센서융합기반의 지도작성 및 위치추정)

  • Jin, Tae-Seok;Lee, Min-Jung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.434-443
    • /
    • 2007
  • Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.