KSII Transactions on Internet and Information Systems (TIIS)
/
제6권5호
/
pp.1400-1420
/
2012
Object detection and tracking using visual sensors is a critical component of surveillance systems, which presents many challenges. This paper addresses the enhancement of object detection and tracking via the combination of multiple visual sensors. The enhancement method we introduce compensates for missed object detection based on the partial detection of objects by multiple visual sensors. When one detects an object or more visual sensors, the detected object's local positions transformed into a global object position. Local and global information exchange allows a missed local object's position to recover. However, the exchange of the information may degrade the detection and tracking performance by incorrectly recovering the local object position, which propagated by false object detection. Furthermore, local object positions corresponding to an identical object can transformed into nonequivalent global object positions because of detection uncertainty such as shadows or other artifacts. We improved the performance by preventing the propagation of false object detection. In addition, we present an evaluation method for the final global object position. The proposed method analyzed and evaluated using case studies.
Blob detection is an essential ingredient process in some computer applications such as intelligent visual surveillance. However, previous blob detection algorithms are still computationally heavy so that supporting real-time multi-channel intelligent visual surveillance in a workstation or even one-channel real-time visual surveillance in a embedded system using them turns out prohibitively difficult. In this paper, we propose a fast and precise blob detection algorithm for visual surveillance. Blob detection in visual surveillance goes through several processing steps: foreground mask extraction, foreground mask correction, and connected component labeling. Foreground mask correction necessary for a precise detection is usually accomplished using morphological operations like opening and closing. Morphological operations are computationally expensive and moreover, they are difficult to run in parallel with connected component labeling routine since they need much different processing from what connected component labeling does. In this paper, we first develop a fast and precise foreground mask correction method utilizing on neighbor pixel checking which is also employed in connected component labeling so that the developed foreground mask correction method can be incorporated into connected component labeling routine. Through experiments, it is verified that our proposed blob detection algorithm based on the foreground mask correction method developed in this paper shows better processing speed and more precise blob detection.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3712-3729
/
2020
Smoke detection is helpful for early fire detection. With its large coverage area and low cost, vision-based smoke detection technology is the main research direction of outdoor smoke detection. We propose a two-stage smoke detection method combined with block Deep Normalization and Convolutional Neural Network (DNCNN) and visual change image. In the first stage, each suspected smoke region is detected from each frame of the images by using block DNCNN. According to the physical characteristics of smoke diffusion, a concept of visual change image is put forward in this paper, which is constructed by the video motion change state of the suspected smoke regions, and can describe the physical diffusion characteristics of smoke in the time and space domains. In the second stage, the Support Vector Machine (SVM) classifier is used to classify the Histogram of Oriented Gradients (HOG) features of visual change images of the suspected smoke regions, in this way to reduce the false alarm caused by the smoke-like objects such as cloud and fog. Simulation experiments are carried out on two public datasets of smoke. Results show that the accuracy and recall rate of smoke detection are high, and the false alarm rate is much lower than that of other comparison methods.
본 연구에서는 얼굴 동영상에서 입술의 움직임과 음성 간의 동기화 탐지 방법을 제안한다. 기존의 연구에서는 얼굴 탐지 기술로 얼굴 영역의 바운딩 박스를 도출하고, 박스의 하단 절반 영역을 시각 인코더의 입력으로 사용하여 입술-음성 동기화 탐지에 필요한 시각적인 특징을 추출하였다. 본 연구에서는 입술-음성 동기화 탐지 모델이 음성 정보의 발화 영역인 입술에 더 집중할 수 있도록 사전 학습된 시각적 Attention 기반의 인코더 도입을 제안한다. 이를 위해 음성 정보 없이 시각적 정보만으로 발화하는 말을 예측하는 독순술(Lip-Reading)에서 사용된 Visual Transformer Pooling(VTP) 모듈을 인코더로 채택했다. 그리고, 제안 방법이 학습 파라미터 수가 적음에도 불구하고 LRS2 데이터 세트에서 다섯 프레임 기준으로 94.5% 정확도를 보임으로써 최근 모델인 VocaList를 능가하는 것을 실험적으로 증명하였다. 또, 제안 방법은 학습에 사용되지 않은 Acappella 데이터셋에서도 VocaList 모델보다 8% 가량의 성능 향상이 있음을 확인하였다.
Park, Heesu;Roy, Pantu Kumar;Noh, Youngju;Park, Hyuk;Lee, Joongho;Shin, Sangtae;Cho, Jongki
한국수정란이식학회지
/
제31권2호
/
pp.137-143
/
2016
This study was conducted to evaluate a visual surveillance system. The advancement of recording technology and network service make it easy to record and transfer the videos. Moreover, progressed recognition technology help to make a distinction each other. Cows show distinguishing behaviors during their estrus period. The mounting is one of the behaviors. The result was different depending on the breed of the cows and the size of the farm. In the case of Korean native cattle, the estrus detection rate was 71.15%, however, dairy cows, the estrus detection rate was 39.38%. At the farms having below 6 modules, the estrus detection rate was 87.41%. On the other hand, at the farms having over 6 modules, the estrus detection rate was 77.78%. With the proper progress, the visual surveillance system can be used to detect heat detection.
Object detection is a challenging field in the visual understanding research area, detecting objects in visual scenes, and the location of such objects. It has recently been applied in various fields such as autonomous driving, image surveillance, and face recognition. In traditional methods of object detection, handcrafted features have been designed for overcoming various visual environments; however, they have a trade-off issue between accuracy and computational efficiency. Deep learning is a revolutionary paradigm in the machine-learning field. In addition, because deep-learning-based methods, particularly convolutional neural networks (CNNs), have outperformed conventional methods in terms of object detection, they have been studied in recent years. In this article, we provide a brief descriptive summary of several recent deep-learning methods for object detection and deep learning architectures. We also compare the performance of these methods and present a research guide of the object detection field.
본 논문에서는 군용 항공기의 시각 탐지(visual detection)를 지연시키는 위장기술에 대하여 조사하였다. 위장(camouflage)이란 관찰자에게 드러나 보이지 않도록 어떤 물체를 거짓으로 꾸미는 것으로 정의할 수 있다. 그러나 군사적 관점에서의 위장은 완전히 사라지게 하는 것이라기보다는 관찰자의 탐지시간을 연장하거나 탐지가능성(detectability)을 낮추는데 목적이 있다. 기본적으로 항공기 위장은 항공기 위치 탐지를 지연시킬 뿐만 아니라, 관측자에게 항공기의 속도와 고도, 진행방향에 대한 혼란을 유발하여야 한다. 따라서 저(低)탐지기술 또는 위장기술은 군용 항공기의 생존성 향상에 많은 영향을 미치므로 많은 연구가 지속적으로 진행되었다. 근접 지원 항공기 및 제공 전투기의 경우는 다색(multi-tone) 위장패턴과 반음영(counter-shaded) 위장패턴이 일반적으로 적용되고 있다. 아울러, 단색(mono-tone) 위장패턴 역시 색상(hue)과 명도(brightness)가 적절히 조절 및 조합되었을 때 위장효과가 큰 것으로 나타났다. 항공기의 위장 성능 향상을 위한 능동 시각 위장 기술(active camouflage techniques)에 관한 연구도 진행되었다. 특히, 발광 반사율이 높은 발광 장치를 사용하는 Counter-illumination 기술은 항공기 표면과 배경 하늘의 명도차를 최소화하여 위장 효과를 향상시켰다. 이와 같은 능동 시각 위장 기술은 시각 탐지에 비교적 취약한 저고도 무인기의 생존성 향상에 기여할 것으로 기대된다.
Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae;Cho, Seongwon
한국멀티미디어학회논문지
/
제19권8호
/
pp.1345-1360
/
2016
In this paper, we propose a new real-time human detection under omni-directional cameras for visual surveillance purpose, based on CNN with unified detection and AGMM. Compared to CNN-based state-of-the-art object detection methods. YOLO model-based object detection method boasts of very fast object detection, but with less accuracy. The proposed method adapts the unified detecting CNN of YOLO model so as to be intensified by the additional foreground contextual information obtained from pre-stage AGMM. Increased computational time incurred by additional AGMM processing is compensated by speed-up gain obtained from utilizing 2-D input data consisting of grey-level image data and foreground context information instead of 3-D color input data. Through various experiments, it is shown that the proposed method performs better with respect to accuracy and more robust to environment changes than YOLO model-based human detection method, but with the similar processing speeds to that of YOLO model-based one. Thus, it can be successfully employed for embedded surveillance application.
This paper introduces a method for video shot group detection needed for efficient management and summary of video. The proposed method detects shots based on low-level visual properties and performs temporal and spatial clustering based on visual similarity of neighboring shots. Shot groups created from temporal clustering are further clustered into small groups with respect to visual similarity. A set of representative shot frames are selected from each cluster of the smaller groups representing a scene. Shots excluded from temporal clustering are also clustered into groups from which representative shot frames are selected. A number of video clips are collected and applied to the method for accuracy of shot group detection. We achieved 91% of accuracy of the method for shot group detection. The number of representative shot frames is reduced to 1/3 of the total shot frames. The experiment also shows the inverse relationship between accuracy and compression rate.
본 논문에서는 상관필터를 이용한 영상 추적에서 탐색 영역의 크기 조절이 가능한 재탐지 방법을 제안한다. 실제 장비를 통해 영상 추적 기능을 실행할 때에는 표적이 특정 물체에 가리고 다시 나타나는 일이 빈번하게 일어나는데, 따라서 표적의 소실 판단과 재탐지 방법이 필요하다. 본 알고리즘은 강인한 추적을 위해 커널 상관필터를 사용한다. 일반적인 상관필터를 활용한 영상 추적 알고리즘에서는 표적을 탐지하는 범위가 학습된 필터의 크기에 국한된다. 하지만 표적의 가림이 오랜 시간 지속될수록 표적의 위치는 예측된 위치에서 벗어날 가능성이 커지고, 따라서 충분히 큰 범위에서 표적의 탐색이 이루어져야 한다. 제안하는 방법은 매 프레임 2%씩 탐색 범위를 넓히며 재탐지를 시도하여 성공률을 높인다. 실험은 항공에서 촬영된 4가지 영상을 활용하였고, 제안한 알고리즘은 재탐지가 어려운 데이터셋에서도 성공적인 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.