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 Abstract

Blob detection is an essential ingredient process in some computer applications such as intelligent visual surveillance. 

However, previous blob detection algorithms are still computationally heavy so that supporting real-time multi-channel 

intelligent visual surveillance in a workstation or even one-channel real-time visual surveillance in a embedded system 

using them turns out prohibitively difficult. In this paper, we propose a fast and precise blob detection algorithm for 

visual surveillance. Blob detection in visual surveillance goes through several processing steps: foreground mask 

extraction, foreground mask correction, and connected component labeling. Foreground mask correction necessary for a 

precise detection is usually accomplished using morphological operations like opening and closing. Morphological 

operations are computationally expensive and moreover, they are difficult to run in parallel with connected component 

labeling routine since they need much different processing from what connected component labeling does. In this paper, 

we first develop a fast and precise foreground mask correction method utilizing on neighbor pixel checking which is also 

employed in connected component labeling so that the developed foreground mask correction method can be incorporated 

into connected component labeling routine. Through experiments, it is verified that our proposed blob detection algorithm 

based on the foreground mask correction method developed in this paper shows better processing speed and  more precise 

blob detection.

Ⅰ. Introduction

  Blob detection is the foremost important process 

in various computer vision applications such as 

intelligent visual surveillance. It is now well 

known that the performance of intelligent visual 

surveillance heavily depends on how precisely and 

fastly interesting objects are detected [1]. 

  Blob detection is usually processed through 

several  steps: foreground mask extraction, 

foreground mask correction, and blob 

segmentation through connected component 

labeling. Foreground mask correction has usually 

been accomplished using morphological operations 

like opening and closing as a preprocessing step 

[3,4,5]. However, morphological operations are 

computational expensive. Moreover, they are 

difficult to be computed in parallel with connected 

component labeling procedure since they need 

much different processing from what connected 

component labeling does.

  In this paper, we propose a fast and precise 

blob detection algorithm for visual surveillance. 

We first develop a blob correction method which 

can be efficiently combined with the connected 

component labeling procedure. NFPP(Neighbor 
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Foreground Pixel Propagation) is designed, utilizes 

8-neighbors checking which is also employed in 

connected component labeling procedure (CCL) so 

that NFPP can be incorporated into CCL 

processing routine. Then, foreground mask 

correction is accomplished while CCL is 

processing, which can save the processing time 

much more compared with a conventional blob 

correction method using morphology operations, 

which needs to be processed separately before CCL 

processing. Through the experiments, it is shown 

that the proposed blob detection algorithm based 

on NFPP performs better than the conventional 

blob detection algorithm with respect to the 

processing time and the preciseness in blob 

detection. 

 The rest of the paper is organized as follows. 

Section 2 introduces the basic technical 

background about blob detection, morphology and 

connected component labeling. Section 3 describes 

our proposed blob detection algorithm. There, we 

first explains our developed blob correction 

method, NFPP which is essential in achieving 

faster and more precise than blob detection 

processing. Experiment results are discussed in 

Section 4, and finally the conclusion is presented 

in Section 5.

Ⅱ. Backgrounds 

 2.1  Blob Detection in Motion Analysis 

  Blob detection in intelligent visual surveillance 

usually go through several steps that are shown 

in Fig. 1.    

 Fig. 1. General work flow of motion detection.

Fig. 2 shows example images related with blob 

detection steps. 

Fig. 2. Original frame image (a), foreground binary 

image (b), foreground image after optimize (c) and 

labeled foreground (d)
 

  Foreground masks are the set of all foreground 

pixels, and are represented as binary images 

where white (value 1) pixels are foreground pixels 

and black (value 0) pixels are background pixels. 

Foreground pixels are extracted from the incoming 

current image frame through matching it with the 

background model [2]. For foreground mask 

correction which may need to fill holes or 

eliminate jutted pixels or a small pixel region, 

morphological operations such as  opening and 

closing are usually employed as  preprocessing 

procedures. To detect interesting objects, one 

needs to segment blobs that is defined as a set of 

all connected foreground pixels. After separate 

blobs are segmented, rectangular region enclosing 

each blob tightly are calculated for later 

processing like object tracking.    

 2.2 Morphology

  The basic idea in binary morphology is to probe 

an image with a simple, pre-defined shape, 

drawing conclusions on how this shape fits or 

misses the shapes in the image. This simple 

"probe" is called structuring element, and is itself 

a binary image. The popular structure elements 

include disk, square, and cross-shaped element of 

3x3 size.

  The basic operations of binary morphology are 

dilation, erosion, closing, and opening. A dilation 

operation enlarges a region, while an erosion 



Session Ⅰ-A : IT기반기술 25

makes it smaller. A closing operation, defined as 

an operation of applying erosion after dilation, 

can close up internal holes in a region and 

eliminate "bays" along the boundary and a 

opening, defined as an operation of dilation after 

erosion, can get rid of small portions of the 

region that jut out from the boundary into the 

background region.

 2.3 Connected Component Labeling with  

     Union-Find Structure (CCLUF)

  Connected components labeling scans an image 

and groups its pixels into components based on 

pixel connectivity by separated labels. In a 

foreground mask image, the connectivity exists 

between foregrounds pixel by 8-neighborhood 

relation of the pixel. Extracting and labeling of 

various disjoint and connected components in an 

image is central to many automated computer 

vision applications including intelligent visual 

surveillance. 

  Many algorithms have been proposed to deal 

with connected component labeling problem 

[6,7,8,9,10]. The promising efficient algorithms 

usually employ two-pass procedures utilizing 

union-find structure[9,10] which is also adopted 

in this paper. The union-find algorithm, which 

dynamically constructs and manipulates the 

equivalence classes efficiently by tree structures. 

Each disjoint set is stored as a tree structure in 

which a node of the tree represents a label and 

points to its one parent node. This is 

accomplished with only a vector array PARENT 

whose subscripts are the set of possible labels and 

whose values are the labels of the parent nodes. 

A parent value of zero means that this node is 

the root of the tree.

Fig. 3 shows the union-find structure for two 

label sets.

Fig. 3. The union-find structure for two label sets. 

  In the below, we briefly explain the two-pass 

connected component labeling with union-find 

structure.  

  In the 1st pass, the algorithm scans through the 

binary image from left to right and row by row. 

It assigned the smallest label among those of the 

scanned foreground pixel neighbors, and each such 

equivalence class found is entered in the 

union-find structure. At the end of the 1st pass, 

each equivalence class has been completely 

determined and has a unique label, which is the 

root of its tree in the union-find structure. The 

second pass through the image then performs a 

replacement of the temporary label into a final 

label which is done by assigning to each pixel the 

label of its equivalence class.

Fig. 4 shows an example input binary image 

where f means foreground pixel. Fig. 5 shows the 

results of the 1st pass. Fig. 6 shows the final 

labeling after second pass.

Fig. 4. Foreground mask where  f means 

foreground pixel

(a)
 

(b)
    

 
Fig. 5. The results of the 1st pass.
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Fig. 6. Final result

Ⅲ. The Proposed Approach: CLNF

  From the background review in Section 2, one 

can easily understand that it is difficult to 

process morphological operations like closing and 

opening in parallel with connected component 

labeling algorithm. Usual way to do processing 

both operations is to process sequentially: 

morphological operations, first and then connected 

component labeling, next But, morphological 

operations are computationally expensive.

  Thus, we first develop a foreground mask 

correction method which can be incorporated into 

a connected component labeling routine and mask 

correction operations like filling up holes or 

eliminating jutted pixels or isolated pixels can be 

processed while connected component labeling 

routine is processing.

3.1 Neighbor Foreground Pixel Propagation 

   (NFPP)

  A hole in the foreground region is highly likely 

to be  a set of unextracted foreground pixels 

region and jutted pixels or isolated pixels in the 

foreground mask is also highly likely to be 

wrongly extracted as foreground pixels. One can 

observe in the foreground mask that a pixel 

belonging to a hole is likely to have more 

foreground pixel neighbors and on the other hand, 

a jutted pixel or an isolated pixel in a foreground  

mask is likely to have less foreground pixel 

neighbors. 

  Here, we define the foreground neighborhood 

probability of a pixel X, P(X) as the ratio of the 

number of the foreground neighbor pixels over the 

number of all neighbors. In this paper, we use 

8-neighborhood as in Fig. 7. 

 Fig. 7. 8-Neighbors

From this observation, we develop a foreground 

mask correction method, "Neighbor Foreground 

Pixel Propagation (NFPP)". 

    Neighbor Foreground Pixel Propagation 

algorithm

 In binary image where pixels have two states, 

value 1 (foreground pixel) and value 0 

(background pixel), Pixel state is propagated to its 

neighbors to the right and below, depending on its 

foreground neighborhood probability. That is, 

When one scans the binary image from left to 

right in row by row, a state of a pixel X will be 

changed depending on its foreground neighborhood 

probability as follows.   
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Processing of NFPP method is graphically 

illustrated Fig. 8.

Fig. 8. (a) Foreground mask, (b) The result after propagation 

where X are spots that were changed to background (Black), 

O are elements that were turned into foreground (White).

Fig. 9 shows the result of applying NFPP method 

to a foreground mask which was actually obtained 
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using Gaussian Mixture Background Model [2]. 

One can see that the blob after NFPP looks 

clearer and plumper than before.

Fig. 9. (a) Foreground mask, (b) Result after NFPP

  NFPP is a simple but shows a good result in 

blob correction. In addition to a good blob 

correction property, another more important 

property of NFPP preprocessing method is that it 

can be processed while CCl algorithm is being 

processed since both NFPP and CCL utilize pixel 

neighbor checking. This property can save 

computational time a lot in blob detection. Based 

on this property, we propose CLNF(CCLUF with 

NFPP) approach in blob detection, which leads to 

a faster and preciser blob detection than 

conventional blob detection algorithms.

 3.2  CLNF Approach (CCLUF with NFPP)

 3.2.1 Outline

  In this paper, we propose a blob detection 

algorithm, CLNF which combines CClUF(Connected 

Component Labeling with Union and Find 

Structure) and  NFPP(Neighbor Foreground Pixel 

propagation). Work flow of CLNF approach is 

shown in Fig. 10 with two passes (scans).

Fig. 10.  Work flow of CLNF

While first labeling and making Union-Find 

structure is doing in the 1st pass (scan), a blob 

correction using NFPP is also processed. In the 

2nd pass(scan), temporarily assigned labels of the 

pixels are adjusted into a correct label using the 

accomplished union-find structure and finally 

rectangle blob regions are calculated using the 

labelled connected component.  

 3.2.2 Pseudo Code

  For clearer explanation of our proposed blob 

detection algorithm, CLNF,  the pseudo codes of 

CLNF are sketched  in the below.

 Pseudo code for 1st scan 
-NewLabel: the label value assigned to current pixel

-TargetLabel: the Label which will be replaced by NewLabel

-Image[]: binary image

-Labels[]: label map of Image[]

-LabelTree[]: PARENT array in Union-Find Structure explained in Section 2.2        

           current max label :=0;

With each Image[X]

Start

  With each of 8 neighbors of a pixel X

  Start

    - Count Foreground Pixel

    - To a foreground pixel neighbor, assign NewLabel as the smallest label among 

its left or        above foreground pixel neighbors' labels

    - In case it has two different neighbor labels, assign TargetLabel as the bigger 

label

  End

  If foreground neighborhood probability >= 1/2

  Then

    Image[X] = Foreground;      // Foreground =1

  Else

    Image[X] = Background;          // Background=0;

  End

  If Image[X] is foreground

  Then

    If NewLabel and TargetLabel assigned

    Then

      Recalculate new parent NewLabel for TargetLabel

      LabelTree[TargetLabel] = NewLabel

      Labels[X] = NewLabel

    Else

      Increase current max label by 1;

      Labels[X] = Current max label;

    End

  End

End

 Pseudocode for 2nd scan 
-sizeBlobs[]: list of each blob size

-blobsRectangles[]: list of blob rectangle regions

With each Labels[X]

Start

  Relabel  Labels[X] by its parent note in tree LabelTree[]    

  Increase sizeBlobs[Labels[X]] by 1;

  Recalculate blobsRectangles[Labels[X]]

End
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 Ⅳ. Experimental Results

 4.1  The preciseness of NFPP

  We compare NFPP and morphology by relying on 

the preciseness of blob. Fig. 11 shows the result 

that NFPP is  simpler but more effective in 

foreground blob correction than morphological 

operations.

  Foreground mask in Fig.11(a) was obtained using 

Gaussian Mixture Background Model, and 

morphology result in Fig. 11(b) and 11(c) is 

processed using 3x3 kernels. 

Fig. 11. Foreground mask  (a), result after morphology 

(Open) (b), after morphology (Open + Close) (c), after 

NFPP (d)

  Certainly, if one chooses a more suitable kernel 

size for morphology, one can get a similar clear 

blob as in NFPP, also. However, in that case one 

must pay more  computational cost.

 4.2  Comparision about processing time

  In order to compare the computational cost 

between the conventional blob detection algorithm 

using morphology (CONV, hereafter) and the 

proposed blob detection algorithm, CLNF, we did 

two experiments. 

First experiment calculates the processing time for 

blob detection in one frame Fig. 11(a) for both 

CONV and CLNF. And the second experiment 

calculates the processing time for continuous blob 

detection in movies. The resolution of each image 

frame is 320x240 and sizes of  movie1 and movie2  

are 4.67 MB(221 frames) and 245MB(1117 frames). 

Both results of experiments have been done using 

a Windows PC with a 3GHz Pentium 4 Core of 

3GHz and 3GB main memory is showed in Table 1a 

and 1b, respectively.

     time(sec) movie1(sec) movie2(sec)

CONV 0.017714 4.297988 21.053498

CLNF 0.003722 0.874097 4.111587

(a)                   (b) 

Table 1.(a) Comparison of the processing time between 

CONV and CLNF for one frame of Fig. 11(a). (b) for two 

movies.

The results of Table 1a and 1b certainly shows 

that the proposed blob detection algorithm is 

faster than the conventional blob detection 

algorithm using morphological operations for 

foreground mask correction.

V. CONCLUSION

In this paper, we proposed a fast and precise blob 

detection algorithm for visual surveillance. The 

main idea of the proposed approach is to develop a 

blob correction method which can be efficiently 

processed in parallel with the connected component 

labeling algorithm. NFPP, designed in this paper 

utilizes 8-neighbors checking which is also 

employed in CCL so that  it can be incorporated in 

parallel into CCL processing. The experiment results 

show the effectiveness of the proposed blob 

detection algorithm with respect to the processing 

time and the preciseness in blob detection.
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