
Session Ⅰ-A : IT기반기술 23

A Fast and Precise Blob Detection

 빈흐타한

 숭실대학교

 Thanh Binh Nguyen, Sun-Tae Chung

 School of Electronics Engineering, Soongsil

 University

 Abstract

Blob detection is an essential ingredient process in some computer applications such as intelligent visual surveillance.

However, previous blob detection algorithms are still computationally heavy so that supporting real-time multi-channel

intelligent visual surveillance in a workstation or even one-channel real-time visual surveillance in a embedded system

using them turns out prohibitively difficult. In this paper, we propose a fast and precise blob detection algorithm for

visual surveillance. Blob detection in visual surveillance goes through several processing steps: foreground mask

extraction, foreground mask correction, and connected component labeling. Foreground mask correction necessary for a

precise detection is usually accomplished using morphological operations like opening and closing. Morphological

operations are computationally expensive and moreover, they are difficult to run in parallel with connected component

labeling routine since they need much different processing from what connected component labeling does. In this paper,

we first develop a fast and precise foreground mask correction method utilizing on neighbor pixel checking which is also

employed in connected component labeling so that the developed foreground mask correction method can be incorporated

into connected component labeling routine. Through experiments, it is verified that our proposed blob detection algorithm

based on the foreground mask correction method developed in this paper shows better processing speed and more precise

blob detection.

Ⅰ. Introduction

 Blob detection is the foremost important process

in various computer vision applications such as

intelligent visual surveillance. It is now well

known that the performance of intelligent visual

surveillance heavily depends on how precisely and

fastly interesting objects are detected [1].

 Blob detection is usually processed through

several steps: foreground mask extraction,

foreground mask correction, and blob

segmentation through connected component

labeling. Foreground mask correction has usually

been accomplished using morphological operations

like opening and closing as a preprocessing step

[3,4,5]. However, morphological operations are

computational expensive. Moreover, they are

difficult to be computed in parallel with connected

component labeling procedure since they need

much different processing from what connected

component labeling does.

 In this paper, we propose a fast and precise

blob detection algorithm for visual surveillance.

We first develop a blob correction method which

can be efficiently combined with the connected

component labeling procedure. NFPP(Neighbor

한국콘텐츠학회 2009 춘계종합학술대회24

Foreground Pixel Propagation) is designed, utilizes

8-neighbors checking which is also employed in

connected component labeling procedure (CCL) so

that NFPP can be incorporated into CCL

processing routine. Then, foreground mask

correction is accomplished while CCL is

processing, which can save the processing time

much more compared with a conventional blob

correction method using morphology operations,

which needs to be processed separately before CCL

processing. Through the experiments, it is shown

that the proposed blob detection algorithm based

on NFPP performs better than the conventional

blob detection algorithm with respect to the

processing time and the preciseness in blob

detection.

 The rest of the paper is organized as follows.

Section 2 introduces the basic technical

background about blob detection, morphology and

connected component labeling. Section 3 describes

our proposed blob detection algorithm. There, we

first explains our developed blob correction

method, NFPP which is essential in achieving

faster and more precise than blob detection

processing. Experiment results are discussed in

Section 4, and finally the conclusion is presented

in Section 5.

Ⅱ. Backgrounds

 2.1 Blob Detection in Motion Analysis

 Blob detection in intelligent visual surveillance

usually go through several steps that are shown

in Fig. 1.

 Fig. 1. General work flow of motion detection.

Fig. 2 shows example images related with blob

detection steps.

Fig. 2. Original frame image (a), foreground binary

image (b), foreground image after optimize (c) and

labeled foreground (d)

 Foreground masks are the set of all foreground

pixels, and are represented as binary images

where white (value 1) pixels are foreground pixels

and black (value 0) pixels are background pixels.

Foreground pixels are extracted from the incoming

current image frame through matching it with the

background model [2]. For foreground mask

correction which may need to fill holes or

eliminate jutted pixels or a small pixel region,

morphological operations such as opening and

closing are usually employed as preprocessing

procedures. To detect interesting objects, one

needs to segment blobs that is defined as a set of

all connected foreground pixels. After separate

blobs are segmented, rectangular region enclosing

each blob tightly are calculated for later

processing like object tracking.

 2.2 Morphology

 The basic idea in binary morphology is to probe

an image with a simple, pre-defined shape,

drawing conclusions on how this shape fits or

misses the shapes in the image. This simple

"probe" is called structuring element, and is itself

a binary image. The popular structure elements

include disk, square, and cross-shaped element of

3x3 size.

 The basic operations of binary morphology are

dilation, erosion, closing, and opening. A dilation

operation enlarges a region, while an erosion

Session Ⅰ-A : IT기반기술 25

makes it smaller. A closing operation, defined as

an operation of applying erosion after dilation,

can close up internal holes in a region and

eliminate "bays" along the boundary and a

opening, defined as an operation of dilation after

erosion, can get rid of small portions of the

region that jut out from the boundary into the

background region.

 2.3 Connected Component Labeling with

 Union-Find Structure (CCLUF)

 Connected components labeling scans an image

and groups its pixels into components based on

pixel connectivity by separated labels. In a

foreground mask image, the connectivity exists

between foregrounds pixel by 8-neighborhood

relation of the pixel. Extracting and labeling of

various disjoint and connected components in an

image is central to many automated computer

vision applications including intelligent visual

surveillance.

 Many algorithms have been proposed to deal

with connected component labeling problem

[6,7,8,9,10]. The promising efficient algorithms

usually employ two-pass procedures utilizing

union-find structure[9,10] which is also adopted

in this paper. The union-find algorithm, which

dynamically constructs and manipulates the

equivalence classes efficiently by tree structures.

Each disjoint set is stored as a tree structure in

which a node of the tree represents a label and

points to its one parent node. This is

accomplished with only a vector array PARENT

whose subscripts are the set of possible labels and

whose values are the labels of the parent nodes.

A parent value of zero means that this node is

the root of the tree.

Fig. 3 shows the union-find structure for two

label sets.

Fig. 3. The union-find structure for two label sets.

 In the below, we briefly explain the two-pass

connected component labeling with union-find

structure.

 In the 1st pass, the algorithm scans through the

binary image from left to right and row by row.

It assigned the smallest label among those of the

scanned foreground pixel neighbors, and each such

equivalence class found is entered in the

union-find structure. At the end of the 1st pass,

each equivalence class has been completely

determined and has a unique label, which is the

root of its tree in the union-find structure. The

second pass through the image then performs a

replacement of the temporary label into a final

label which is done by assigning to each pixel the

label of its equivalence class.

Fig. 4 shows an example input binary image

where f means foreground pixel. Fig. 5 shows the

results of the 1st pass. Fig. 6 shows the final

labeling after second pass.

Fig. 4. Foreground mask where f means

foreground pixel

(a)

(b)

Fig. 5. The results of the 1st pass.

한국콘텐츠학회 2009 춘계종합학술대회26

Fig. 6. Final result

Ⅲ. The Proposed Approach: CLNF

 From the background review in Section 2, one

can easily understand that it is difficult to

process morphological operations like closing and

opening in parallel with connected component

labeling algorithm. Usual way to do processing

both operations is to process sequentially:

morphological operations, first and then connected

component labeling, next But, morphological

operations are computationally expensive.

 Thus, we first develop a foreground mask

correction method which can be incorporated into

a connected component labeling routine and mask

correction operations like filling up holes or

eliminating jutted pixels or isolated pixels can be

processed while connected component labeling

routine is processing.

3.1 Neighbor Foreground Pixel Propagation

 (NFPP)

 A hole in the foreground region is highly likely

to be a set of unextracted foreground pixels

region and jutted pixels or isolated pixels in the

foreground mask is also highly likely to be

wrongly extracted as foreground pixels. One can

observe in the foreground mask that a pixel

belonging to a hole is likely to have more

foreground pixel neighbors and on the other hand,

a jutted pixel or an isolated pixel in a foreground

mask is likely to have less foreground pixel

neighbors.

 Here, we define the foreground neighborhood

probability of a pixel X, P(X) as the ratio of the

number of the foreground neighbor pixels over the

number of all neighbors. In this paper, we use

8-neighborhood as in Fig. 7.

 Fig. 7. 8-Neighbors

From this observation, we develop a foreground

mask correction method, "Neighbor Foreground

Pixel Propagation (NFPP)".

 Neighbor Foreground Pixel Propagation

algorithm

 In binary image where pixels have two states,

value 1 (foreground pixel) and value 0

(background pixel), Pixel state is propagated to its

neighbors to the right and below, depending on its

foreground neighborhood probability. That is,

When one scans the binary image from left to

right in row by row, a state of a pixel X will be

changed depending on its foreground neighborhood

probability as follows.

 








  ≥ 


 

Processing of NFPP method is graphically

illustrated Fig. 8.

Fig. 8. (a) Foreground mask, (b) The result after propagation

where X are spots that were changed to background (Black),

O are elements that were turned into foreground (White).

Fig. 9 shows the result of applying NFPP method

to a foreground mask which was actually obtained

Session Ⅰ-A : IT기반기술 27

using Gaussian Mixture Background Model [2].

One can see that the blob after NFPP looks

clearer and plumper than before.

Fig. 9. (a) Foreground mask, (b) Result after NFPP

 NFPP is a simple but shows a good result in

blob correction. In addition to a good blob

correction property, another more important

property of NFPP preprocessing method is that it

can be processed while CCl algorithm is being

processed since both NFPP and CCL utilize pixel

neighbor checking. This property can save

computational time a lot in blob detection. Based

on this property, we propose CLNF(CCLUF with

NFPP) approach in blob detection, which leads to

a faster and preciser blob detection than

conventional blob detection algorithms.

 3.2 CLNF Approach (CCLUF with NFPP)

 3.2.1 Outline

 In this paper, we propose a blob detection

algorithm, CLNF which combines CClUF(Connected

Component Labeling with Union and Find

Structure) and NFPP(Neighbor Foreground Pixel

propagation). Work flow of CLNF approach is

shown in Fig. 10 with two passes (scans).

Fig. 10. Work flow of CLNF

While first labeling and making Union-Find

structure is doing in the 1st pass (scan), a blob

correction using NFPP is also processed. In the

2nd pass(scan), temporarily assigned labels of the

pixels are adjusted into a correct label using the

accomplished union-find structure and finally

rectangle blob regions are calculated using the

labelled connected component.

 3.2.2 Pseudo Code

 For clearer explanation of our proposed blob

detection algorithm, CLNF, the pseudo codes of

CLNF are sketched in the below.

 Pseudo code for 1st scan
-NewLabel: the label value assigned to current pixel

-TargetLabel: the Label which will be replaced by NewLabel

-Image[]: binary image

-Labels[]: label map of Image[]

-LabelTree[]: PARENT array in Union-Find Structure explained in Section 2.2

 current max label :=0;

With each Image[X]

Start

 With each of 8 neighbors of a pixel X

 Start

 - Count Foreground Pixel

 - To a foreground pixel neighbor, assign NewLabel as the smallest label among

its left or above foreground pixel neighbors' labels

 - In case it has two different neighbor labels, assign TargetLabel as the bigger

label

 End

 If foreground neighborhood probability >= 1/2

 Then

 Image[X] = Foreground; // Foreground =1

 Else

 Image[X] = Background; // Background=0;

 End

 If Image[X] is foreground

 Then

 If NewLabel and TargetLabel assigned

 Then

 Recalculate new parent NewLabel for TargetLabel

 LabelTree[TargetLabel] = NewLabel

 Labels[X] = NewLabel

 Else

 Increase current max label by 1;

 Labels[X] = Current max label;

 End

 End

End

 Pseudocode for 2nd scan
-sizeBlobs[]: list of each blob size

-blobsRectangles[]: list of blob rectangle regions

With each Labels[X]

Start

 Relabel Labels[X] by its parent note in tree LabelTree[]

 Increase sizeBlobs[Labels[X]] by 1;

 Recalculate blobsRectangles[Labels[X]]

End

한국콘텐츠학회 2009 춘계종합학술대회28

 Ⅳ. Experimental Results

 4.1 The preciseness of NFPP

 We compare NFPP and morphology by relying on

the preciseness of blob. Fig. 11 shows the result

that NFPP is simpler but more effective in

foreground blob correction than morphological

operations.

 Foreground mask in Fig.11(a) was obtained using

Gaussian Mixture Background Model, and

morphology result in Fig. 11(b) and 11(c) is

processed using 3x3 kernels.

Fig. 11. Foreground mask (a), result after morphology

(Open) (b), after morphology (Open + Close) (c), after

NFPP (d)

 Certainly, if one chooses a more suitable kernel

size for morphology, one can get a similar clear

blob as in NFPP, also. However, in that case one

must pay more computational cost.

 4.2 Comparision about processing time

 In order to compare the computational cost

between the conventional blob detection algorithm

using morphology (CONV, hereafter) and the

proposed blob detection algorithm, CLNF, we did

two experiments.

First experiment calculates the processing time for

blob detection in one frame Fig. 11(a) for both

CONV and CLNF. And the second experiment

calculates the processing time for continuous blob

detection in movies. The resolution of each image

frame is 320x240 and sizes of movie1 and movie2

are 4.67 MB(221 frames) and 245MB(1117 frames).

Both results of experiments have been done using

a Windows PC with a 3GHz Pentium 4 Core of

3GHz and 3GB main memory is showed in Table 1a

and 1b, respectively.

 time(sec) movie1(sec) movie2(sec)

CONV 0.017714 4.297988 21.053498

CLNF 0.003722 0.874097 4.111587

(a) (b)

Table 1.(a) Comparison of the processing time between

CONV and CLNF for one frame of Fig. 11(a). (b) for two

movies.

The results of Table 1a and 1b certainly shows

that the proposed blob detection algorithm is

faster than the conventional blob detection

algorithm using morphological operations for

foreground mask correction.

V. CONCLUSION

In this paper, we proposed a fast and precise blob

detection algorithm for visual surveillance. The

main idea of the proposed approach is to develop a

blob correction method which can be efficiently

processed in parallel with the connected component

labeling algorithm. NFPP, designed in this paper

utilizes 8-neighbors checking which is also

employed in CCL so that it can be incorporated in

parallel into CCL processing. The experiment results

show the effectiveness of the proposed blob

detection algorithm with respect to the processing

time and the preciseness in blob detection.

ACKNOWLEDGMENT

The authors would like to acknowledge the

following support for the accomplishment of this

Session Ⅰ-A : IT기반기술 29

work: Soongsil University Research Fund and BK21

of Korea.

 REFERENCES

[1] J. Sai and J. Ariyama, Computer Vision Workload

Analysis: Case Study of Video Surveillance

Systems, Springer-Verlag: Tokyo, Japan, 2000.

[2] Z. Zivkovic, "Improved adaptive Gaussian

mixture model for background subtraction," ICPR

2004, pp. 28-31.

[3] P. Soille, “Opening and Closing,” in

Morphological Image Analysis: Principles and

Applications, 2nd ed. Berlin, Germany: Springer,

2003, ch. 4, pp. 105-137.

[4] R. C. Gonzalez, R. E. Woods, and S. L. Eddins,

“Morphological Image Processing,” in Digital

Image Processing using MATLAB. Upper Saddle

River, NJ: Pearson Prentice Hall, 2004, pp.

334-377.

[5] E. R. Dougherty and R. A. Lotufo, Hands-on

Morphological Image Processing. Bellingham,

Wash.: SPIE Optical Engineering Press, 2003.

[6] Rosenfeld, A., Pfaltz, J.L. “Sequential

Operations in Digital Processing”, JACM, 13,

417-494, 1966.

[7] R. H. Haralick, Some neighborhood operations,

In M. Onoe, K. Preston, and A. Rosenfeld,

19(Eds.) Real Time/Parallel Computing Image

Analysis, 1981, Plenum Press, New York.

[8] R. Lumia, L. Shapiro, and O. Zuniga, A New

Connected Components Algorithm for Virtual

Memory Computers, Computer Vision, Graphics,

and Image Processing, 22(1983) 287-300.

[9] C. Fiorio and J. Gustedt, Two linear time

Union-Find strategies for image processing,

Theo-retical Computer Science, 154(1996)

165-181.

[10] R. E. Tarjan, Efficiency of a Good But Not

Linear Set Union Algorithm, Journal of the

As-sociation for Computing Machinery, 22(1975)

215-225.

