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1)1. Introduction

The task of lip-voice synchronization detection, re-

ferred to as lip-sync detection, involves detecting whether 

voice and lip movements in videos are synchronized. 

Lip-sync detection can be used to determine the consis-

tency between visual and auditory signals for various types 
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of video content, such as in press conferences, dubbed 

movies, singing, and synthetic face videos. When viewing 

videos online, hamans are highly sensitive to subtle lip- 

sync descrepancies [1]. However, detecting subtle yet cru-

cial lip-sync nuances is an exceptional challenge. In par-

ticular, lip-sync detection has been used as a component 

in the training of talking face synthesis models that syn-

thesize facial expressions to synchronize with given voices 

[2].

Previous studies typically receive the lower halves of 

facial images as input to the visual encoder, potentially 

including redundant areas for lip-sync detection, such as 

clothing, background, and the nose. To enhance lip-sync 
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요     약

본 연구에서는 얼굴 동영상에서 입술의 움직임과 음성 간의 동기화 탐지 방법을 제안한다. 기존의 연구에서는 얼굴 탐지 기술로 얼굴 영역의 

바운딩 박스를 도출하고, 박스의 하단 절반 영역을 시각 인코더의 입력으로 사용하여 입술-음성 동기화 탐지에 필요한 시각적인 특징을 추출하였다. 
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도입을 제안한다. 이를 위해 음성 정보 없이 시각적 정보만으로 발화하는 말을 예측하는 독순술(Lip-Reading)에서 사용된 Visual Transformer 

Pooling(VTP) 모듈을 인코더로 채택했다. 그리고, 제안 방법이 학습 파라미터 수가 적음에도 불구하고 LRS2 데이터 세트에서 다섯 프레임 기준으로 

94.5% 정확도를 보임으로써 최근 모델인 VocaList를 능가하는 것을 실험적으로 증명하였다. 또, 제안 방법은 학습에 사용되지 않은 Acappella 

데이터셋에서도 VocaList 모델보다 8% 가량의 성능 향상이 있음을 확인하였다.
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detection accuracy by focusing on the essential informa-

tion and minimizing redundancy, we propose a visual en-

coder designed to spatially prioritize lip areas. In essence, 

our proposal involves the utilization of a visual encoder 

that gives more weight to meaningful local features within 

the input image. As a baseline model, we have chosen the 

current State-of-The-Arts (SoTA) VocaList.

To create a visual encoder with a targeted focus on lip 

areas, we drew inspiration from the lip-reading task, where 

the goal is to infer scripts based solely on visual infor-

mation from mouth movements. Prajwal et al. introduced 

a lip-reading model that significantly improved accuracy 

compared to previous works [3,4,16]. They incorporated a 

Visual Transformer Pooling (VTP) module into their visual 

encoder, allowing spatial attention to lip areas. Leveraging 

the attention weights of the VTP encoder, which exclusi-

vely consider visual lip movements in critical regions for 

predicting scripted speech, we anticipate improved lip- 

sync performance. Notably, the VTP module employs a 

linear transformer designed to reduce computational com-

plexity while preserving the original performance [5]. 

Consequently, we expect to overcome the problem of the 

increasing number of parameters observed in previous 

work, VocaList [6], with our proposed method.

In this study, the proposed VTPVocaList leverages the 

pre-trained VTP as part of the visual encoder to extract 

the feature vector from the lip areas directly related to 

lip-voice synchronization. We experimentally demonstrate 

that VTPVocaList surpasses previous models in terms of 

lip-sync detection accuracy on several test datasets, in-

cluding LRS2, LRS3, and Acappella [7-9]. Significantly, 

VTPVocaList underwent training exclusively on the LRS2 

dataset; nevertheless, it exhibited superior performance 

compared to earlier studies on three distinct test sets: 

LRS2, LRS3, and Acappella. Despite achieving SoTA per-

formance, VTPVocaList manages to maintain this high 

standard with only 67% of the parameters present in the 

previous VocaList, thanks to the utilization of the pre- 

trained VTP module.

The remaining sections of this paper are structured as 

follows: Section 2 provides a summary of previous related 

studies, while Section 3 delves into the detailed archi-

tecture and components of VTPVocaList. Section 4 pres-

ents the experimental results. Following this, Section 5 

outlines the conclusions, and finally, Section 6 discusses 

the limitations and suggests areas for future work.

2. Related Works

Early lip-sync detection models utilized multi-layer per-

ceptrons to determine whether viseme-phoneme mapping 

is correct [10]. As training this model requires a dataset 

containing pairs of Visemes and Phonemes with ground- 

truth labels, the labeling process is expensive and cum-

bersome. To address these challenges, a pioneering self- 

supervised learning method called SyncNet was introduced 

[11]. Recent strides in lip-sync research have progressed, 

inspired by the structure and methodology originated 

from SyncNet. It utilized a Siamese network architecture 

comprising CNN-based visual and audio encoders trained 

in a self-supervised manner. A visual encoder and audio 

encoder extract feature vectors from facial videos and 

voices. During this process, positive and negative pairs 

are generated autonomously, consisting of aligned pairs 

and intentionally misaligned pairs in the context of 

lip-sync. Subsequently, the contrastive learning method is 

employed [9].

Among the lip-sync detection models built upon SyncNet, 

PM modifies the loss function employed by SyncNet. 

Additionally, Kim et al. enhanced SyncNet by introducing 

a classification model, thereby transforming the lip-sync 

detection problem into a classification problem [12]. AVST 

stacked a transformer-based synchronization block in ad-

dition to SyncNet. Following the extraction of visual and 

audio embeddings from the CNN-based encoders, SyncNet, 

the vanilla transformer architecture, syncrhonization block, 

is then utilized to capture their correlation. Instead of a 

vanilla transformer, VocaList replaced the transformer- 

based synchronization block with multimodal transformer 

architecture to learn the correspondence between video 

and audio embeddings based on cross-modal attention 

modules[6]. The attention mechanism based on multi-

modal transformers computes attention weights between 

different modalities, such as audio and images. In this 

study, the VTP encoder, akin to Vision Transformer[13], 

subdivides images into smaller patch units and computes 

regional attention weights within the image.

Over time, [21] introduced an algorithm for lip-sync 

detection based on viseme-phoneme correspondence, 

without utilizing the SyncNet-based evaluation method.

SyncNet-based models have gradually improved lip- 

sync detection accuracy from 75.8% to 94.5% on the LRS2 

dataset. Table 1 and Fig. 1 display the structural changes 

in lip synchronization models.
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Year Structure Model Training Method Backbone Model Accuracy on LRS2

2014 - [12] Supervised MLP -

2016

A

SyncNet

Self-supervised

CNN

75.8%

2018 PM 88.1%

2020 SyncNet 91.0%

2021 B AVST Transformer 92.0%

2022 C VocaList Multi-Transformer 92.8%

2023 D VTPVocaList(ours)

Multi-Transformer

+
Visual Attention

94.5%

Related Works in Lip synchronization. The simplified model structures (A,B,C and D) are shown in Figure 1. SyncNet  is 
improved model used in Wav2Lip. Details are in Related workst.

Table 1. Related Works

Fig. 1. Four different structures for lip-sync detection. In the second column of Table 1, symbols A, B, C, and 

D are linked. At first, A is composed of visual encoder and audio encoder for feature extraction, respectively. Then 

B is added the synchronization block that learns the correlation between features. C replaced the synchronization 

block with a more advanced multi-modal transformer. In this study, D is proposed and replaced with a VTP encoder 

that focuses on regional attention to lip movements

 

3. Method

3.1 Rationale

Most existing lip-sync detection models rely on a rough 

face-cropping method that detects a face and crops the 

lower half of the image for input. However, the lower half 

of facial images may include redundant areas, such as 

necks and clothes, in addition to the region of interest 

(ROI) around the mouth [15]. Moreover, the performance 

of the face-cropping methods depends on the angles of 

the target faces. Prajwal et. al. addressed this issue in the 

context of lip-reading tasks [16]. Instead of the rough 

face-cropping method, they utilize the transformer-based 

model VTP, which can learn where to direct visual atten-

tion on a given face image. After training, VTP mostly ac-

cords visual attention to the mouth area, and if necessary, 

also some level of visual attention to other facial areas for 

lip-reading. We adopted a pre-trained VTP module as the 

visual encoder for lip-synchronization detection.

3.2 VTPVocaList Architecture

The proposed method is designed based on VocaList. 

This section describes the entire vocalist pipeline of 

VTPVocaList. And Fig. 2 is shows VTPVocaList Archi-

tecture.
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Fig. 2. VTPVocaList Architecture

 
1) VTP Encoder 

As mentioned earlier, the VTP encoder is a model spe-

cifically trained to concentrate on lip movements without 

incorporating sound information in a lip-reading model 

[16]. The lip-reading model underwent a two-step training 

approach. Initially, the entire model underwent end-to- 

end training, after which the VTP encoder was frozen. 

Subsequently, the remaining script prediction Encoder- 

Decoder model was fine-tuned in the second stage of 

training. Hence, we adopted the well-pretrained VTP en-

coder, deemed effective, for the lip sync detection model. 

Both lip-reading model and VTP encoder were trained on 

three extensive datasets: LRS2, LRS3, and TEDx [7,8,16].

Fig. 3 depicts the visualizations of attention weights ex-

tracted from the VTP encoder on the LRS2 dataset. By uti-

lizing visual inputs with emphasized lip regions, the VTP 

encoder helped enhance lip sync detection accuracy.

As a preprocessing procedure, VTPVocaList detects and 

crops facial areas by using a face tracker[14]  after receiv-

ing an array of video frames. The initial part of the VTP 

encoder consisting of 3D/2D CNN layers extracts a local 

visual feature for each preprocessed frame. 3D/2D CNN is 

applied to 5 frames with a 1 frame stride. 

Extracted feature is flattened and projected onto 



∊

 × , where  ∊, and  is the num-

ber of frames. The  is (24,24) and c is 128. The VTP 

encoder then adds spatial positional encodings (SPE) to 

the visual feature vectors and passes them to the trans-

former encoders to produce a self-attended feature map 



. 

Fig. 3. Visualization of the Attention Weights Extracted

from the VTP Encoder on the LRS2 Dataset
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The VTP encoder uses a linear transformer that reduces 

computational complexity compared to the vanilla trans-

former [17]. The number of transformer encoder layers is 

8 and a detailed description of VTP can be found [16].
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2) Audio Encoder

The audio encoder consists of 2D CNN layers with re-

sidual skip connections. For 25 fps video clips, the audio 

encoder receives 16 mel-spectrograms, 

, which match 

five frames. The mel-spectrogram was obtained using 80 

mel-filters with hop size of 200 and window size of 800 

from audio signals at 16 kHz sampling rate. Similar to the 

visual encoder, the audio encoder receives 


 ∊ ×   

mel-spectrograms and returns a 512-dim feature vector 




.




  





 ∊  

3) Synchronization block

The synchronization block is a multi-modal trans-

former-based architecture introduced using VocaList. This 

approach was inspired by the cross-modal transformer ar-

chitecture proposed in [18]. The objective of the design 

was to learn the correlated features of different modalities 

such as audio, video, and text. The synchronization block 

was divided into three transformer encoders: AV, VA, and 

hybrid fusion transformer. The keys, queries, and values 

of both the AV and VA transformer encoders come from 

the visual and audio encoders, and the outputs of both 

are passed to the hybrid fusion transformer encoder as 

input. The mathematical formulation is as follows:




  













  












 











4) Classifier

The 512-dimensional output of the hybrid fusion trans-

former passes through a max-pooling layer and an activa-

tion layer, and then through an additional classifier and 

linear layer, to determine whether the video clip and au-

dio segment are synchronized. A detailed description of 

both the audio encoder and synchronization block can be 

found in [6]. 



 




4. Experimnets

4.1 Training

As proposed for SyncNet, training was conducted in a 

self-supervised manner using contrastive learning [9]. For 

contrastive learning, two types of pairs, positive and neg-

ative, are randomly selected, where the positive pairs in-

clude well-synchronized video clips and audio segments, 

whereas the negative pairs include mis-aligned video clips 

and audio segments. Fig. 4 shows the process that makes 

the positive pairs and negative pairs. Using binary cross- 

entropy loss, VTPVocaList was trained as a binary classi-

fication model. And we utilized the pretrained VTP en-

coder on LRS2 and LRS datasets, consequently the VTP 

visual encoder remains frozen throughout the entire train-

ing process. We utilized the pretrained VTP encoder, as-

suming it was well-trained to focus solely on lip move-

ments without auditory information. 

The model training process took approximately three 

hours with an RTX 3090 GPU. All experiments ran on an 

Anaconda3 virtual environment with Python 3.9, CUDA 

11.2 versions, and Jupyter Notebook.

4.2 Dataset

1) LRS2

The Oxford BBC lip-reading sentences 2 (LRS2) dataset 

contains hundreds of thousands of spoken sentences from 

the UK BBC broadcasting network [7]. The total dataset is 

divided into pretrain, training, validation, and test sets. In 

particular, the pretrain set contains 96K utterances and 

2,064K words, and the test set contains 1,243 utterances 

and 6,663 words. We used the pretrain set for training and 

the test set for testing VTPVocaList. 

2) LRS3

LRS3 is a large-scale audio-visual dataset collected 

from TED and TEDx videos [8]. The LRS3 dataset has not 

been used in the previous works. Although we did not use 

LRS3 for training, we used it as a test dataset to measure 

the lip-sync detection accuracy. LRS3 Test set contains 

1,452 utterances and 11K words.

3) Acappella

Acappella is a dataset containing solo-singing videos 

Fig. 4. Self-supervised Learning Method with Positive 

and Negative Pairs
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gathered from YouTube, covering a wide distribution of 

singers and languages [19]. It is divided into training, vali-

dation, and test set, and the test set is further divided into 

‘seen-heard’ and ‘unseen-unheard’ subsets. The singers in 

seen-heard subset included those in the training set, and 

the unseen-unheard subset contained the rest. The 

‘unseen-unheard’ subset was used for evaluation. Note 

that we did not use the Acappella dataset for training.

4.3 Evaluation Protocol

For a fair comparison, we followed the evaluation pro-

tocol suggested in previous studies [20]. As the video clip 

was shifted by a temporal stride of 1 from -15 to +15, the 

lip-sync detection model generated the corresponding 

sync scores. The prediction offset was determined based 

on the highest synchronization scores. If the offset was 

within a threshold ± frame for LRS2 and LRS3, lip-sync 

detection was considered correct. Accuracy is calculated 

as the number of windows where lip sync is considered 

correct divided by the total number of windows in the 

dataset.

PM initially introduced the context frame evaluation 

method, which involves averaging the surrounding em-

bedding vectors in cases where meaningful information 

for determining lip sync within a 5-frame window cannot 

be found. PM and VocaList extended the context frame 

length from 5 to 15 or 25 depending on the dataset, and 

the average offsets were computed for comparison with 

the threshold. In particular, the threshold was set to ± 

for the Acappella dataset, following the experiments in a 

previous study on VocaList. They argued that determining 

lip sync in singing voices is much more challenging com-

pared to typical speech datasets due to the greater preva-

lence of vowels in singing.

4.4 Experiments Results

After training VTPVocaList on the LRS2 training set, we 

evaluated its performance on three test datasets: LRS2, 

LRS3, and Acappella. Using the experimental measure-

ments from previous literature restricted our selection of 

counterparts. For LRS2, SyncNet, PM, AVST, and VocaList 

were selected as counterparts. For LRS3, VocaList was se-

lected as the counterpart. For Acappella, SyncNet and 

VocaList were selected as counterparts. Lip-sync detection 

accuracy was measured by varying the context frame 

length from 5 to 15 (or 25).

The accuracy evaluated on the test set of the LRS2 da-

taset is presented in Table 2. The results indicate an im-

provement in accuracy as the model advances, and a 

corresponding increase in accuracy with longer context 

frame lengths. Although VocaList and VTPVocaList dem-

onstrated similar performance with 15 frames, VTP 

VocaList, leveraging a pretrained VTP encoder, has ap-

proximately half the number of trainable parameters 

compared to VocaList. The numbers within parentheses 

and * represent the parameter count, including the pre-

trained VTP encoder. Even when combined, this count is 

over 30% less than that of VocaList.

Table 3 presents the accuracy evaluated on the test set 

of the LRS3 dataset. LRS3, which has not been used in 

previous studies and for which the code is not publicly 

available, was exclusively compared with the evaluable 
 

Model
Trainable
Params

Context frame length

5(0.2s) 7(0.28s) 9(0.36s) 11(0.44s) 13(0.52s) 15(0.6s)

SyncNet 13.6M 75.8 82.3 87.6 91.8 94.5 96.1

PM 13.6M 88.1 93.8 96.4 97.9 98.7 99.1

AVST 42.4M 92.0 95.5 97.7 98.8 99.3 99.6

VocaList 80.1M 92.8 96.7 98.4 99.3 99.6 99.8

VTP VocaList
(ours)

41.4M
(54.3M)*

94.5 97.6 99.0 99.5 99.7 99.8

Table 2. Comparison of Lip-sync Detection Accuracy on LRS2

Model
Context frame length

5(0.2s) 7(0.28s) 9(0.36s) 11(0.44s) 13(0.52s) 15(0.6s)

VocaList 75.25 82.37 86.69 89.55 91.29 92.45

VTP VocaList
(ours) 79.38 84.88 88.14 90.33 91.63 92.48

Table 3. Comparison of Lip-sync Detection Accuracy on LRS3
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Model
Trainded
dataset

Context frame length

5(0.2s) 10(0.4s) 15(0.6s) 20(0.8s) 25(1s)

SyncNet Acappella 57.7 63.9 69.9 75.1 78.7

VocaList LRS2 56.7 65.1 72.2 77.2 81.2

VocaList Acappella 58.8 65.4 71.6 76.5 80.5

VTP VocaList
(ours) LRS2 66.8 74.7 80.6 84.8 87.8

Table 4. Comparison of Lip-sync Detection Accuracy on Acappella

 

VocaList. Even when evaluated using LRS3, which was not 

used in training, VTPVocaList demonstrates superior per-

formance.

Table 4 shows the results of the comparison on 

Acappella 'unseen-unheard' test set. Notably, VTPVocaList 

trained on LRS2 outperforms VocaList trained on the 

Acappella training set.

5. Conclusion

In this study, several lip-sync detection models follow-

ing SyncNet were summarized. The architectures of these 

models comprise four parts: a visual encoder, an audio 

encoder, a module to learn the correlation between fea-

tures, and a classifier. For lip-sync detection, this study 

proposes VTPVocaList. which leverages the pre-trained 

VTP as part of the visual encoder. Using the attention 

mechanism of the transformer model, VTP enables the 

visual encoder to learn to focus on lip areas that are di-

rectly related to lip-voice synchronization. The experi-

ments on three well-known datasets showed that 

VTPVocaList surpasses existing models in terms of 

lip-sync detection accuracy, even with fewer trainable pa-

rameters than its counterparts.

The VTPVocaList is designed against joint training for 

the VTP module, deeming the pre-trained VTP module ef-

fective in focusing on lip regions without relying on sound 

information. Despite surpassing the accuracy of prior 

studies, the rate of improvement becomes marginal as the 

length of the context frame used in the evaluation method 

increases. This diminishing improvement rate is attributed 

to the encoder's ability to extract abstract and informative 

features while filtering out redundancies. In harnessing lo-

cal and visual attention information within image frames 

via the VTP module, we acknowledge the potential for fu-

ture research to explore attention utilization across tem-

poral sequences, offering a promising avenue to further 

diminish feature redundancies.
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