• 제목/요약/키워드: Vision-based recovery

검색결과 21건 처리시간 0.026초

Light Source Target Detection Algorithm for Vision-based UAV Recovery

  • Won, Dae-Yeon;Tahk, Min-Jea;Roh, Eun-Jung;Shin, Sung-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권2호
    • /
    • pp.114-120
    • /
    • 2008
  • In the vision-based recovery phase, a terminal guidance for the blended-wing UAV requires visual information of high accuracy. This paper presents the light source target design and detection algorithm for vision-based UAV recovery. We propose a recovery target design with red and green LEDs. This frame provides the relative position between the target and the UAV. The target detection algorithm includes HSV-based segmentation, morphology, and blob processing. These techniques are employed to give efficient detection results in day and night net recovery operations. The performance of the proposed target design and detection algorithm are evaluated through ground-based experiments.

가상 현실 어플리케이션을 위한 관성과 시각기반 하이브리드 트래킹 (Hybrid Inertial and Vision-Based Tracking for VR applications)

  • 구재필;안상철;김형곤;김익재;구열회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.103-106
    • /
    • 2003
  • In this paper, we present a hybrid inertial and vision-based tracking system for VR applications. One of the most important aspects of VR (Virtual Reality) is providing a correspondence between the physical and virtual world. As a result, accurate and real-time tracking of an object's position and orientation is a prerequisite for many applications in the Virtual Environments. Pure vision-based tracking has low jitter and high accuracy but cannot guarantee real-time pose recovery under all circumstances. Pure inertial tracking has high update rates and full 6DOF recovery but lacks long-term stability due to sensor noise. In order to overcome the individual drawbacks and to build better tracking system, we introduce the fusion of vision-based and inertial tracking. Sensor fusion makes the proposal tracking system robust, fast, accurate, and low jitter and noise. Hybrid tracking is implemented with Kalman Filter that operates in a predictor-corrector manner. Combining bluetooth serial communication module gives the system a full mobility and makes the system affordable, lightweight energy-efficient. and practical. Full 6DOF recovery and the full mobility of proposal system enable the user to interact with mobile device like PDA and provide the user with natural interface.

  • PDF

Spectral Reflectivity Recovery from Tristimulus Values Using 3D Extrapolation with 3D Interpolation

  • Kim, Bog G.;Werner, John S.;Siminovitch, Michael;Papamichael, Kostantinos;Han, Jeongwon;Park, Soobeen
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.507-516
    • /
    • 2014
  • We present a hybrid method for spectral reflectivity recovery, using 3D extrapolation as a supplemental method for 3D interpolation. The proposed 3D extrapolation is an extended version of 3D interpolation based on the barycentric algorithm. It is faster and more accurate than the conventional spectral-recovery techniques of principal-component analysis and nonnegative matrix transformation. Four different extrapolation techniques (based on nearest neighbors, circumcenters, in-centers, and centroids) are formulated and applied to recover spectral reflectivity. Under the standard conditions of a D65 illuminant and 1964 $10^{\circ}$ observer, all reflectivity data from 1269 Munsell color chips are successfully reconstructed. The superiority of the proposed method is demonstrated using statistical data to compare coefficients of correlation and determination. The proposed hybrid method can be applied for fast and accurate spectral reflectivity recovery in image processing.

Visual Servoing of a Mobile Manipulator Based on Stereo Vision

  • Lee, H.J.;Park, M.G.;Lee, M.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.767-771
    • /
    • 2003
  • In this study, stereo vision system is applied to a mobile manipulator for effective tasks. The robot can recognize a target and compute the position of the target using a stereo vision system. While a monocular vision system needs properties such as geometric shape of a target, a stereo vision system enables the robot to find the position of a target without additional information. Many algorithms have been studied and developed for an object recognition. However, most of these approaches have a disadvantage of the complexity of computations and they are inadequate for real-time visual servoing. However, color information is useful for simple recognition in real-time visual servoing. In this paper, we refer to about object recognition using colors, stereo matching method, recovery of 3D space and the visual servoing.

  • PDF

스테레오 영상을 이용한 이동형 머니퓰레이터의 시각제어 (Visual Servoing of a Mobile Manipulator Based on Stereo Vision)

  • 이현정;박민규;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.411-417
    • /
    • 2005
  • In this study, stereo vision system is applied to a mobile manipulator for effective tasks. The robot can recognize a target and compute the potion of the target using a stereo vision system. While a monocular vision system needs properties such as geometric shape of a target, a stereo vision system enables the robot to find the position of a target without additional information. Many algorithms have been studied and developed for an object recognition. However, most of these approaches have a disadvantage of the complexity of computations and they are inadequate for real-time visual servoing. Color information is useful for simple recognition in real-time visual servoing. This paper addresses object recognition using colors, stereo matching method to reduce its calculation time, recovery of 3D space and the visual servoing.

Vision Training Device(OTUS)적용에 따른 기능성 근시의 개선 효과 (Improvement effect of Functional Myopia by Using of Vision Training Device(OTUS))

  • 박성용;윤영대;김덕훈;이동희
    • 한국융합학회논문지
    • /
    • 제11권2호
    • /
    • pp.147-154
    • /
    • 2020
  • 본 연구는 조절훈련을 통한 기능성 근시개선 효과를 유발할 수 있는, ICT 기반의 시력회복용 웨어러블 디바이스의 개발에 관한 것이다. 시력훈련기기(OTUS)는 헤드마운트 형태를 가지는 웨어러블 디바이스로써 섬모체 근육의 수축과 이완, 눈모음과 눈벌림을 자연스럽게 자극하는 조절 훈련기기이다. 사용자는 디바이스를 통해 저장된 개인 시력정보를 바탕으로 맞춤형 시력훈련을 진행할 수 있다. 실험에서는 기능성 근시를 유발한 후 두 그룹(비교군 16명, 조절훈련군 16명)에 대해 조절훈련으로 인한 증상의 개선 효과를 비교 분석하였다. 그 결과 조절훈련군에서 기능성 근시가 평균 0.44D±0.35(p<0.05)로 개선되었다. 이 연구가 시력훈련기기(OTUS)의 기능성 근시에 대한 유효성을 밝히고 있지만, 기능성 근시를 장기간 제어할 수 있는 가능성을 입증하기 위해 추가적인 임상시험이 필요할 것으로 판단된다.

Sorting for Plastic Bottles Recycling using Machine Vision Methods

  • SanaSadat Mirahsani;Sasan Ghasemipour;AmirAbbas Motamedi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.89-98
    • /
    • 2024
  • Due to the increase in population and consequently the increase in the production of plastic waste, recovery of this part of the waste is an undeniable necessity. On the other hand, the recycling of plastic waste, if it is placed in a systematic process and controlled, can be effective in creating jobs and maintaining environmental health. Waste collection in many large cities has become a major problem due to lack of proper planning with increasing waste from population accumulation and changing consumption patterns. Today, waste management is no longer limited to waste collection, but waste collection is one of the important areas of its management, i.e. training, segregation, collection, recycling and processing. In this study, a systematic method based on machine vision for sorting plastic bottles in different colors for recycling purposes will be proposed. In this method, image classification and segmentation techniques were presented to improve the performance of plastic bottle classification. Evaluation of the proposed method and comparison with previous works showed the proper performance of this method.

분해법기반 프로젝티브 재구성에 관한 연구 (A Study on Projective Reconstruction based on Factorization Method)

  • 정윤용;조청운;홍현기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2003
  • The recovery of 3D scene structure from multiple views has been long one of the central problems in computer vision. This paper presents a new projective reconstruction method based on factorization for un-calibrated image sequences. The proposed algorithm provides an effective measure to construct frame groups by using various information between frames. The experimental results show that the proposed method can reconstruct a more precise 3D structure than the precious methods such as the merging method.

  • PDF

Three-dimensional Shape Recovery from Image Focus Using Polynomial Regression Analysis in Optical Microscopy

  • Lee, Sung-An;Lee, Byung-Geun
    • Current Optics and Photonics
    • /
    • 제4권5호
    • /
    • pp.411-420
    • /
    • 2020
  • Non-contact three-dimensional (3D) measuring technology is used to identify defects in miniature products, such as optics, polymers, and semiconductors. Hence, this technology has garnered significant attention in computer vision research. In this paper, we focus on shape from focus (SFF), which is an optical passive method for 3D shape recovery. In existing SFF techniques using interpolation, all datasets of the focus volume are approximated using one model. However, these methods cannot demonstrate how a predefined model fits all image points of an object. Moreover, it is not reasonable to explain various shapes of datasets using one model. Furthermore, if noise is present in the dataset, an error will be generated. Therefore, we propose an algorithm based on polynomial regression analysis to address these disadvantages. Our experimental results indicate that the proposed method is more accurate than existing methods.

Recovery of Asteroids from Observations of Too-Short Arcs by Triangulating Their Admissible Regions

  • Espitia, Daniela;Quintero, Edwin A.;Parra, Miguel A.
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권2호
    • /
    • pp.119-134
    • /
    • 2021
  • The data set collected during the night of the discovery of a minor body constitutes a too-short arc (TSA), resulting in failure of the differential correction procedure. This makes it necessary to recover the object during subsequent nights to gather more observations that will allow a preliminary orbit to be calculated. In this work, we present a recovery technique based on sampling the admissible region (AdRe) by the constrained Delaunay triangulation. We construct the AdRe in its topocentric and geocentric variants, using logarithmic and exponential metrics, for the following near-Earth-asteroids: (3122) Florence, (3200) Phaethon, 2003 GW, (1864) Daedalus, 2003 BH84 and 1977 QQ5; and the main-belt asteroids: (1738) Oosterhoff, (4690) Strasbourg, (555) Norma, 2006 SO375, 2003 GE55 and (32811) Apisaon. Using our sampling technique, we established the ephemeris region for these objects, using intervals of observation from 25 minutes up to 2 hours, with propagation times from 1 up to 47 days. All these objects were recoverable in a field of vision of 95' × 72', except for (3122) Florence and (3200) Phaethon, since they were observed during their closest approach to the Earth. In the case of 2006 SO375, we performed an additional test with only two observations separated by 2 minutes, achieving a recovery of up to 28 days after its discovery, which demonstrates the potential of our technique.