• Title/Summary/Keyword: Vision based measurement system

Search Result 216, Processing Time 0.026 seconds

Development of the Roughing Path Measurement System for Footwear (신발 러핑 경로 측정기 개발)

  • 강동배;김화영;손성민;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.120-129
    • /
    • 2003
  • For successful establishment of the roughing CAM system based on reverse engineering, it is necessary to develop the measurement method for generation of roughing path from a physical footwear model. In this study, the development of the roughing path measurement system is presented. It consists of 3 CCD cameras, image acquisition board and the roughing path measurement algorithm. The 3 CCD cameras capture images of the sidewall and the bottom of the footwear and, from two images, the outer and inner lines are extracted using image-processing algorithm. The roughing path measurement algorithm generates the roughing path which is reflected on the change of resolution according to the distance between the CCD camera and the measured point. The experimental results show that the developed system can measure the roughing path within the allowable roughing error range.

A study on the development of gas measurement system in shoes mold and automatic gas-vent exchange machine with computer vision (신발금형의 가스 배출량 측정 장치와 영상정보를 이용한 가스벤트 자동 교환 시스템의 개발)

  • Kwon, Jang-Woo;Hong, Jun-Eui;Yoon, Dong-Eop;Choi, Heung-Ho;Kil, Gyung-Suk
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.20-27
    • /
    • 2006
  • This paper presents a gas measurement system for deciding hole positions on a PU middle-sole mold from computed gas amount. The optimal number of holes and their positions on the shoe mold are decided from statistical experiment results to overcome the problem of excessive expenses in gas vent exchange. This paper also describes a gas vent exchange mechanism using computer vision system. The gas hole detecting process is based on computer vision algorithms represented as a simple Pattern Matching. The experimental result showed us that the system was useful to calculate the number of holes and their positions on the shoes mold.

Development of an IGVM Integrated Navigation System for Vehicular Lane-Level Guidance Services

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.119-129
    • /
    • 2016
  • This paper presents an integrated navigation system for accurate navigation solution-based safety and convenience services in the vehicular augmented reality (AR)-head up display (HUD) system. For lane-level guidance service, especially, an accurate navigation system is essential. To achieve this, an inertial navigation system (INS)/global positioning system (GPS)/vision/digital map (IGVM) integrated navigation system has been developing. In this paper, the concept of the integrated navigation system is introduced and is implemented based on a multi-model switching filter and vehicle status decided by using the GPS data and inertial measurement unit (IMU) measurements. The performance of the implemented navigation system is verified experimentally.

Stereo vision distance measurement algorithm using Laser point for Image processing based Automatic car-parking system (영상처리기반 자동주차 시스템을 위한 레이저 포인터를 이용한 스테레오 비전 거리측정 알고리즘)

  • Kim, Yoon-Ho;Lim, Myoung-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.373-376
    • /
    • 2007
  • As a part of automatic car parking, this paper have devised the distance measurement algorism using stereo vision system which measure between object and parking lot. In this simulation, laser pointer is used for detecting edge of designated object and real distance is measured by searching the position of laser pointer and measuring the distance. Which are 1 / 1.5 / 2 / 2.5 / 3m and adjusted correction had applied in order for use in car parking system.

  • PDF

Improvement of the Optical Characteristics of Vision System for Precision Screws Using Ray Tracing Simulation (광선추적을 이용한 정밀나사 비전검사용 광학계의 결상특성 향상)

  • Baek, Soon-Bo;Lee, Ki-Yean;Joo, Won-Jong;Park, Keun;Ra, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1094-1102
    • /
    • 2011
  • Recent trends for the miniaturization and weight reduction of portable electronic parts is the use of subminiature components. Assembly of the miniaturized components requires subminiature screws of which pitch sizes are in a micrometer scale. To produce such a subminiature screw with high precision threads, not only a precision forming technology but also high-precision measurement technique is required. In the present work, a vision inspection system is developed to measure the thread profile of a subminiature screw. Optical simulation based on a ray tracing method is used to design and analyze the optical system of the vision inspection apparatus. Through this simulation, optical performance of the developed vision inspection system is optimized. The image processing algorithm for the precision screw inspection is also discussed.

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.

Experiments of Urban Autonomous Navigation using Lane Tracking Control with Monocular Vision (도심 자율주행을 위한 비전기반 차선 추종주행 실험)

  • Suh, Seung-Beum;Kang, Yeon-Sik;Roh, Chi-Won;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.480-487
    • /
    • 2009
  • Autonomous Lane detection with vision is a difficult problem because of various road conditions, such as shadowy road surface, various light conditions, and the signs on the road. In this paper we propose a robust lane detection algorithm to overcome shadowy road problem using a statistical method. The algorithm is applied to the vision-based mobile robot system and the robot followed the lane with the lane following controller. In parallel with the lane following controller, the global position of the robot is estimated by the developed localization method to specify the locations where the lane is discontinued. The results of experiments, done in the region where the GPS measurement is unreliable, show good performance to detect and to follow the lane in complex conditions with shades, water marks, and so on.

Customized Pattern-Recognition Technique using Vision Measurement System Development in New Car Manufacturing Process (패턴인식 기법을 적용한 신차 제조공정 맞춤식 비젼 계측시스템 개발)

  • Lee, Gyung-Il;Kim, Jae-yeol;Roh, Chi-sung;Choi, Choul Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.51-59
    • /
    • 2016
  • Measurements of the automobile manufacturers are available anywhere and anytime, directly based on the criterion of failure is measured. The maintenance of high-precision production activities is direct evidence of the fact that competitive manufacturing activities are very important in determining the success of companies to recall defective starting from raw material costs. The current manufacturing sites produce calipers and clearance gauge the degree of tool only specific. Therefore, judging the quality, including the number of errors, requires a lot of attention to the dimension failures in day-to-day measurements and measurement tasks and duties repeated in difficult situations. In this paper, we aim to develop a vehicle manufacturing plant site using each of the manufacturing processes while operating a measurement tool. We display it using the Image Processing PC-based S/W with all those visual facts by management and recorded as image information a more accurate and current situation to obtain information and share visual measurements. We carry out research on the design and development vision inspection algorithm applied for pattern-recognition techniques that can help manufacturing site quality control.

Pose Estimation of Ground Test Bed using Ceiling Landmark and Optical Flow Based on Single Camera/IMU Fusion (천정부착 랜드마크와 광류를 이용한 단일 카메라/관성 센서 융합 기반의 인공위성 지상시험장치의 위치 및 자세 추정)

  • Shin, Ok-Shik;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, the pose estimation method for the satellite GTB (Ground Test Bed) using vision/MEMS IMU (Inertial Measurement Unit) integrated system is presented. The GTB for verifying a satellite system on the ground is similar to the mobile robot having thrusters and a reaction wheel as actuators and floating on the floor by compressed air. The EKF (Extended Kalman Filter) is also used for fusion of MEMS IMU and vision system that consists of a single camera and infrared LEDs that is ceiling landmarks. The fusion filter generally utilizes the position of feature points from the image as measurement. However, this method can cause position error due to the bias of MEMS IMU when the camera image is not obtained if the bias is not properly estimated through the filter. Therefore, it is proposed that the fusion method which uses the position of feature points and the velocity of the camera determined from optical flow of feature points. It is verified by experiments that the performance of the proposed method is robust to the bias of IMU compared to the method that uses only the position of feature points.

Design and Analysis of Illumination Optics for Image Uniformity in Omnidirectional Vision Inspection System for Screw Threads (나사산 전면검사 비전시스템의 영상 균일도 향상을 위한 조명 광학계 설계 및 해석)

  • Lee, Chang Hun;Lim, Yeong Eun;Park, Keun;Ra, Seung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • Precision screws have a wide range of industrial applications such as electrical and automotive products. To produce screw threads with high precision, not only high precision manufacturing technology but also reliable measurement technology is required. Machine vision systems have been used in the automatic inspection of screw threads based on backlight illumination, which cannot detect defects on the thread surface. Recently, an omnidirectional inspection system for screw threads was developed to obtain $360^{\circ}$ images of screws, based on front light illumination. In this study, the illumination design for the omnidirectional inspection system was modified by adding a light shield to improve the image uniformity. Optical simulation for various shield designs was performed to analyze image uniformity of the obtained images. The simulation results were analyzed statistically using response surface method, from which optical performance of the omnidirectional inspection system could be optimized in terms of image quality and uniformity.