• Title/Summary/Keyword: Vision Strain

Search Result 43, Processing Time 0.03 seconds

Further Development of Vision-Based Strain Measurement Methods to Verify Finite Element Analyses

  • Kim, Hyung jong;Lee, Daeyong
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.343-352
    • /
    • 1996
  • One of the preferred methods that can be used to verify the results of finite element analysis is to measure surface strains of the deformed part for purpose of direct comparison with simulation results. Instead of using the usual manual method the vision-based measurement method is capable of determining surface geometry and strain from the deformed grid pattern automatically with the help of a computer. To obtain strain distribution over an area, the coordinates of such a surface grid are determined from the multiple video images by applying the photogrammetry principle. Methods to improve the overall accuracy of the vision-based strain measurement system are explored and the possible accuracies that can be attained by such a measurement method are discussed. A major emphasis is placed on the initial grid application method its accuracy and ease of subsequent image processing. Finite element analyses of limiting dome height(LDH) test are carried out and the results of them are compared with exsperimen-tal data.

  • PDF

Development of Material Deformation Measurement System using Machine Vision (머신 비전을 활용한 재료 변형 측정 기술 개발)

  • E. B. Mok;W. J. Chung;C. W. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 2023
  • In this study, the deformation of materials was measured using the video and tracking API of OpenCV. Circular markers attached to the material were selected the region of interests (ROIs). The position of the marker was measured from the area center of the circular marker. The position and displacement of the center point was measured along the image frames. For the verification, tensile tests were conducted. In the tensile test, four circular markers were attached along the longitudinal and transverse directions. The strain was calculated using the distance between markers both in the longitudinal and transverse direction. As a result, the stress-strain curve obtained using machine vision is compared to the stress-strain curve obtained from the DIC results. RMSE values of the strain from the machine vision and DIC were less than 0.005. In addition, as a measurement example, a bending angle and springback measurement according to bending deformation, and a moving position measurement of a punch, a blank holder, and a die by time change were performed. Using the proposed method, the deformation and displacement of the materials were measured precisely and easily.

A Study on the Improvement of Accuracy and Precision in the Vision-Based Surface-Strain Measurement (비전을 이용한 곡면변형률 측정의 정확도 및 정밀도 향상에 관한 연구)

  • 김두수;김형종
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.294-305
    • /
    • 1999
  • A vision-based surface-strain measurement system has been still improved since the authors devel-oped the first version of it. New algorithms for the subpixel measurement and surface smoothing are introduced to improve the accuracy and precision in the present study. The effects of these algorithms are investigated by error analysis. And the equations required to calculate 3D surface-strain of a shell element are derived from the shape function of a linear solid finite-element. The influences of external factors on the measurement error are also examined, and several trials are made to obtain possible optimal condition which may minimize the error.

  • PDF

Improvement of the Stereo Vision-Based Surface-Strain Measurement System for Large Stamped Parts (중.대형 판재성형 제품의 곡면변형률 측정을 위한 스테레오 비전 시스템의 개선)

  • 김형종;김두수;김헌영
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.404-412
    • /
    • 2000
  • It is desirable to use the square grid analysis with the aid of the stereo vision and image processing techniques in order to automatically measure the surface-strain distribution over a stamped part. But this method has some inherent problems such as the difficulty in enhancement of bad images, the measurement error due to the digital image resolution and the limit of the area that can be measured at a time. Therefore, it is still hard to measure the strain distribution over the entire surface of a medium-or large-sized stamped part even by using an automated strain measurement system. In this study, several methods which enable to solve these problems considerably without losing accuracy and precision In measurement are suggested. The superposition of images that have different high-lightened or damaged part from each other gives much enhanced image. A new algorithm for constructing of the element connectivity from the line-thinned image helps recognize up to 1,000 elements. And the geometry assembling algorithm including the global error minimization makes it possible to measure a large specimen with reliability and efficiency.

  • PDF

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

Development of an Algorithm for the Vision-Based Surface-Strain Measurment of Large Stamped Parts (비전을 이용한 중.대형 판재성형 제품의 곡면 변형률 측정 알고리듬 개발)

  • 김형종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.269-272
    • /
    • 1999
  • It is still hard to measure the strain distribution over entire surface of a medium or large-size stamped part even by using an automated strain measurement system. Several methods which enable to enlarge the measurement range without losing accuracy and precision are suggested in this study, The superposition of images having different high-lightened or damaged part each other results in an enhanced image. A new method for constructing the element connectivity from a line-thinned image makes it possible to identify up to 1,000 elements. And the geometry assembling algorithm is proved very efficient in which the whole area to be measured is divided into several parts ; the coordinate transformation between every two adjacent parts is obtained from the concept of the least square error ; and the 3-D shape or strain distribution over the whole surface is assembled,

  • PDF

Improvement of the Accuracy and Conveniency in Automated Strain Measurement through High-Resolution Image Processing (고해상도 화상처리를 통한 자동 변형률 측정의 정확도와 편의성 개선)

  • Kim, H.J.;Choi, S.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.34-39
    • /
    • 2006
  • An automated surface-strain measurement system, named ASIAS, was developed by using the image processing and stereo vision techniques in the previous studies by the corresponding author and his coworkers. This system has been upgraded mainly to improve the accuracy through image enhancement, sub-pixel measurement, surface smoothing, etc., since the first version was released. The present study has still more improved the convenience of users as well as the accuracy of measurement by processing high resolution images 8 mega pixels or more which can be easily obtained from a portable digital steal camera. It is proved that high resolution image processing greatly decreases the measurement error and gives strain data without considerable deterioration of accuracy even when the deformed grids to be measured and the master grids for camera calibration are captured together in the same image, making the whole process of strain measurement much simpler.

  • PDF

Measurement of Strain of Sheet Metal (화상처리기법을 이용한 판재의 변형률 측정(I))

  • 황창원;김낙수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.207-212
    • /
    • 1997
  • In estimating the formability of sheet metal, the stereo vision system contributes the accuracy of strain of sheet metal, the convenience in measuring the strain of sheet metal, and the handiness in preparing the forming limit diagram by calculating the 3D values and strain of sheet metal. The algorithm has been developed so that the 3D-coordinate values of sheet metal could be calculated by image processing which is composed of camera calibration, and the stereo matching of images in two viewpoints. By comparing with experiments, the possibility and the convenience of algorithm has been verified, which could calculate the 3D-coordinate values of sheet metal automatically by using the preprocessing of the original image of sheet metal, which had the noise before adjusting the camera calibration and the stereo matching algorithm.

  • PDF

Measurement of Strain of Sheet Metal by Image Processing (II) (화상처리기법을 이용한 판재의 변형률 측정(II))

  • 정재윤;황창원;허만성;김낙수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.147-152
    • /
    • 1997
  • This paper presents a method for measuring and analyzing strains in sheet metal forming by stereo vision system. A better understanding and evaluation of the formability can be achieved by analyzing stain distribution in deformed sheet metals. By means of image processing technique, it is possible to get strain distribution efficiently. For measuring strain automatically and accurately, algorithms for camera calibration, grid detection, stereo matching and strain analysis has been developed and verified by experiments with GUI(Graphic User Interface).

  • PDF