• Title/Summary/Keyword: Visible transmittance

Search Result 687, Processing Time 0.023 seconds

Taguchi method-optimized roll nanoimprinted polarizer integration in high-brightness display

  • Lee, Dae-Young;Nam, Jung-Gun;Han, Kang-Soo;Yeo, Yun-Jong;Lee, Useung;Cho, Sang-Hwan;Ok, Jong G.
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2022
  • We present the high-brightness large-area 10.1" in-cell polarizer display panel integrated with a wire grid polarizer (WGP) and metal reflector, from the initial design to final system development in a commercially feasible level. We have modeled and developed the WGP architecture integrated with the metal reflector in a single in-cell layer, to achieve excellent polarization efficiency as well as brightness enhancement through the light recycling effect. After the optimization of key experimental parameters via Taguchi method, the roll nanoimprint lithography employing a flexible large-area tiled mold has been utilized to create the 90 nm-pitch polymer resist pattern with the 54.1 nm linewidth and 5.1 nm residual layer thickness. The 90 nm-pitch Al gratings with the 51.4 nm linewidth and 2150 Å height have been successfully fabricated after subsequent etch process, providing the in-cell WGPs with high optical performance in the entire visible light regime. Finally we have integrated the WGP in a commercial 10.1" display device and demonstrated its actual operation, exhibiting 1.24 times enhancement of brightness compared to a conventional film polarizer-based one, with the contrast ratio of 1,004:1. Polarization efficiency and transmittance of the developed WGPs in an in-cell polarizer panel achieve 99.995 % and 42.3 %, respectively.

Research on color coating technology of solution process method using spin coating (스핀 코팅을 이용한 용액 공정 방식의 컬러 코팅 기술 연구)

  • Seongmin Lim;Hyeon-Sik Ahn;Yoonseuk Choi
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.78-84
    • /
    • 2023
  • In this paper, front color glass for Building Integrated Photovoltaic (BIPV) system was implemented by spin coating method using color solution. Solutions suitable for color solutions were investigated using pearlescent pigments and various solutions to implement color glass. One of investigated solutions, NOA 63 and NOA 65, which are ultraviolet light curing agents, were able to implement color glass with superior coating properties and color reproducibility than other solutions. Color glass realized by spin coating with a NOA 65 based color solution showed high transmittance of 86% in the visible and near-infrared wavelength bands, and the change in optical properties of color glass over time was insignificant, making it a suitable material for realizing color glass for BIPV Suitable as a color solution. The solution process method using the spin coating method is expected to facilitate the manufacturing process of front color glass for BIPV as it can produce color glass more easily and quickly than the existing physical deposition method or color glass manufacturing process using nanoparticles.

Effect of the Concentration of Oxygen Vacancies on the Structural and Electrical Characteristics of MZO Thin Films (산소공공 농도에 따른 MZO 투명전도성 박막의 구조적 및 전기적 특성)

  • Jong Hyun Lee;Kyu Mann Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.18-22
    • /
    • 2023
  • We have investigated the effect of the concentration of oxygen vacancies on the characteristics of Mo-doped ZnO (MZO) thin films for the TCO (transparent conducting oxide). For this purpose, MZO thin films were deposited by RF magnetron sputtering at different substrate temperature from room temperature to 300℃. The electrical resistivity of the MZO films decreases with increasing substrate temperature up to 100℃ and then gradually increases at higher temperatures. To investigate the influences of the ambient gases, the flow rate of oxygen and hydrogen in argon was varied from 0.1 sccm to 0.5 sccm. The MZO thin films were preferentially oriented to the (002) direction, regardless of the ambient gases used. The electrical resistivity of the MZO thin films increased with increasing O2 flow rates, whereas the electrical resistivity decreased sharply under an Ar+H2 atmosphere and was nearly the same, regardless of the H2 flow rate used. As the oxygen vacancy concentration increases, the resistivity intended to decrease. In conclusion, Oxygen vacancy affects the MZO thin film's electrical characteristics. All the films showed an average transmittance of over 80% in the visible range.

  • PDF

Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering

  • Jun, D.G.;Cho, H.H.;Jo, D.B.;Lee, K.M.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.260-264
    • /
    • 2012
  • We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of IZO thin films intended for use as anode contacts in the organic light emitting diodes (OLED) devices. These IZO thin films were deposited on the PES film by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar + O2, and Ar + H2) at room temperature. In order to investigate the influences of the ambient gases, the flow rate of oxygen and hydrogen in argon has been changed from 0.1 sccm to 0.5 sccm, respectively. All the IZO thin film has an (222) preferential orientation regardless of ambient gases. The electrical resistivity of the IZO film increased with increasing O2 flow rate, whereas the electrical resistivity decreased sharply under an Ar + H2 atmosphere and was nearly similar regardless of the H2 flow rate. The change of electrical resistivity with changes in the ambient gas composition was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO substrates made with the configuration of IZO/α-NPD/DPVB/Alq3/LiF/Al in order to elucidate the performance of the IZO substrate. The current density and the luminance of OLED devices with IZO thin films deposited in 0.5 sccm H2 ambient gas are the highest amongst all other films.

The Effect of Crystallographic and Optical Properties Under Rapid Thermal Annealing Conditions on Amorphous Ga2O3 Deposited Using RF Sputtering System (RF 스퍼터링 시스템을 이용하여 증착한 비정질 Ga2O3 박막의 급속 열처리 조건에 따른 결정성과 광학적 특성 변화)

  • Hyungmin Kim;Sangbin Park;Jeongsoo Hong;Kyunghwan Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.576-581
    • /
    • 2023
  • The Ga2O3 thin films were deposited using an RF sputtering system and the effect of crystallographic and optical properties under rapid thermal annealing conditions on Ga2O3 thin film was evaluated. A rapid thermal annealing method can fabricate a crystalline Ga2O3 thin film which is applied to various fields with a low cost and a high efficiency compared with the conventional post-annealing method. In this study, the Ga2O3 treated at 900℃ for 1 min showed the beta and gamma phases in XRD measurement. In optical properties, the crystalline Ga2O3 represented a high transmittance of more than 80% in the visible region and was calculated with a high optical bandgap energy of 4.58 eV. The beta and gamma phases Ga2O3 can be obtained by adjusting the rapid thermal annealing temperatures, and the various properties such as the optical bandgap energy can be controlled. Moreover, it is expected that crystalline Ga2O3 can be applied to various devices by controlling not only temperature but process time.

ALD-based Functional Bragg Reflector Structure to Block Harmful Ultraviolet Rays that Affect the Reliability of Organic Devices (유기소자의 신뢰성에 영향을 주는 유해 자외선을 차단하기 위한 ALD기반 기능성 브래그반사경 구조)

  • Hyeun Woo Kim;Hyeong Jun Lee;Seungmi Jang;Hyeongjun Yun;Dokyun Lee;Yongmin Lee;Sangyeon Park;Jihoon Jung;Seokjun Lim;Jeong Hyun Kwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.103-107
    • /
    • 2023
  • To solve the reliability problem of organic devices that are often used outdoors, multifunctional gas barriers that block reactive gases such as moisture and oxygen and reflect harmful light such as ultraviolet rays are needed. In this study, ALD nanolaminate-based optically functional n-DBR was developed to overcome the poor gas permeability of polymer substrates and protect organic devices from harmful light. n-DBR not only achieved a WVTR of 8.76 × 10-6 g·m-2·day-1, but also showed a visible light transmittance of 94.3% and an ultraviolet ray blocking ability of 2.67%. In particular, n-DBR based on a nanolaminate structure maintained its permeability characteristics even in a high temperature and high humidity environment despite being used as a layer of Al2O3. This functional barrier Structure can not only be used as a functional encapsulation barrier for the reliability of organic devices, but can also be used as a tinting film for vehicles.

  • PDF

Characteristics of sub-80 nm three-layered film manufactured by continuous roll-to-roll processes (연속 롤투롤 공정을 이용한 80 나노 이하의 3층 구조 필름 제조 및 특성)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.191-195
    • /
    • 2023
  • Three-layer nano-coated films in applications for the back cover of mobile cellular phones were prepared utilizing a roll-to-roll continuous process. By introducing a coating layer with a ceramic/metal/ceramic three-layer structure, the inherent reflective properties of the metals were maintained while electrically insulating properties were maintained. The thickness of the composite coating layer on a large area PET film with a length of 1,500 nm and width of 500 nm was less than 60 nm, and a uniform thickness was maintained in all areas. The transmittance according to the wavelength range (240~1600 nm) of the nanocoating film gradually increases as the wavelength increases, and is about 48 % at 1,000 nm, which is within the infrared region, and about 35.5 % at 550 nm, which is within the visible region. These results meet the required level of coated backcover (< 40 %).

The emissivity and opto-electrical properties of ZnO/Cu/ZnO thin films for the vehicle applications (ZnO/Cu/ZnO 박막의 차량용 저방사 및 전기광학적 특성 연구)

  • Yeon-Hak Lee;Sun-Kyung Kim;Tae-Yong Eom;Yong-Ha Jeong;Sang-Woo So;Young-Gil Son;Dong-Il Son;Daeil Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.451-456
    • /
    • 2023
  • Transparent conducting films having a three layered structure of ZnO/Cu/ZnO (ZCZ) were deposited onto the glass substrates by using RF and DC magnetron sputtering at room temperature. The emissivity and opto-electrical properties of the films were investigated with a varying thickness(5, 10, 15 nm) of the Cu interlayer. With increasing the Cu thickness to 15 nm, the films showed a enhanced electrical properties. Although ZnO 30/Cu 15/ZnO 30 nm film shows a lower resistivity of 5.2×10-5 Ωcm, it's visible transmittance is deteriorated by increased optical absorbtion of the films. In addition, X-ray diffraction patterns indicated that the insertion of Cu interlayer improve the grain size of ZnO films, which is favor for the electrical and optical properties of transparent conducting films. From the observed low emissivity of the films, it is concluded that the ZCZ thin films with optimal thickness of Cu interlayer can be applied effectively for the car's window coating materials.

Polymerization of HEMA by Electron beam Irradiation and Fabrication of Soft contact lens (전자빔조사에 의한 HEMA의 중합과 소프트콘택트렌즈 제조)

  • Hwang, Kwang-Ha;Shin, Joong-Hyeok;Sung, Yu-Jin;Jeong, Keun-Seung;Jun, Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • Purpose: Polymerization of HEMA(2-hydroxyethyl methacrylate) which can be used in the soft contact lens has been performed by using electron beam(EB) irradiation, and examined the best condition for the polymerization. Comparing the physical properties of the contact lenses to the one fabricated by thermal polymerization method, we check the use possibility of the EB irradiation to the fabrication of the soft contact lens. Methods: We investigated the degree of polymerization of the HEMA according to the composition of the monomer, the additive ratio and the dose of electron beam (0~120 kGy). The degree of polymerization was measured depending on the EB dose to research the best synthetic condition under the EB irradiation. The physical properties of the contact lens such as water content(%), oxygen transmissibility(Dk/t) and optical transmittance were analysed by using the FT-IR results with comparing the two different polymerization method (thermal and electron beam polymerization) with same additive ratio. Results: When the dose of electron beam was above 100 kGy, the degree of polymerization of HEMA was above 99% with regardless using cross-linker and initiator. The water content of the lens fabricated by EB method showed 10% higher than the one by the thermal method which was 40%. The lens fabricated by EB method also showed higher oxygen transmissibility(Dk/t) as same with the water content, and showed twice higher value in the lens fabricated by pure HEMA. According to the FT-IR results, hydrophilic property of the lens fabricated by EB method was increased due to increasing the intermolecular hydrogen bonding. It showed above 90% optical transmittance in the visible range of wavelength on the contact lenses fabricated by the both of two different polymerization method. Conclusions: The polymerization of HEMA without cross-linker and initiator was successful above 100 kGy of EB irradiation. Moreover the lens fabricated from the polymer synthesized by pure HEMA with 100 kGy of EB showed the highest water content and oxygen transmissibility. Therefore EB irradiation is another possible method to synthesize the polymer which can be used for the soft contact lens.

Comparison of In Vitro Lipid Deposition and Change of Optical Characteristics on Daily Disposable Lenses (1-day) and 3-days Lenses Over 3 days (3-days lenses와 daily disposable lenses(1-day)의 착용 시간 별 지방 침착량 및 광학적 특성 변화의 비교)

  • Song, Sun Jung;Lee, Su Yeon;Kim, Ki Hong;Chu, Byoung Sun
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.2
    • /
    • pp.67-73
    • /
    • 2020
  • The study aimed to investigate in vitro lipid deposition of oleic acid, oleic acid methyl ester and cholesterol on a daily disposable (1-day lenses) and 3-days lenses over 3 days and changes of optical characteristics is also investigated. Artificial tear solutions were prepared to simulate actual tear compositions. Two types of contact lenses (1-day lenses (Senofilcon A) and 3-days lenses (silicone tripolymer)) were soaked in the artificial tear solutions within an incubator at 37 ℃ with 150 rpm for 8, 16, 24 hours. Lipid deposition (oleic acid, oleic acid methyl ester and cholesterol) were measured using high performance liquid chromatography (HPLC) instrument. In addition, measurements of oxygen transmissibility, light transmittance and observation of lens surface were conducted. The amount of lipid deposition on the 1-day lenses were 127.55 ㎍/lens for Day 1, 302.96 ㎍/lens, for Day 2, and 353.30 ㎍/lens for Day 3. The 3-days lenses were 46.22 ㎍/lens for Day 1, 66.07 ㎍/lens for Day 2, and 67.45 ㎍/lens for Day 3. Oxygen transmissibility were 81×10-9(cm/sec)(ml O2/ml×mmHg)(Baseline) and 48×10-9(cm/sec)(ml O2/ml×mmHg) (Day 3) for the 1-day lenses, it were 13.23×10-9(cm/sec)(ml O2/ml×mmHg)(Baseline) and 9.6×10-9(cm/sec)(ml O2/ml×mmHg) (Day 3) for the 3-days lenses. Transmittance of each lenses were 97.21% (Baseline) and 94.25% (Day 3) for the 1-day lenses, 97.65% (Baseline) and 95.15% (Day 3) for the 3-days lenses. Observation of surface deposition indicated greatest deposition for the 3-days lenses type on Day 3. Lipid deposition for both lens types increased by day and was greater for the 1-day lenses type. Surface deposition appeared to differ as it was greatest for the 3 days lens type, which may suggest other deposits such as protein may be present.