• Title/Summary/Keyword: Visible light photocatalyst

Search Result 136, Processing Time 0.04 seconds

Preparation of the Titanium Dioxide-Phosphor Composite and its Photocatalytic Reaction under Visible Light (이산화티타늄-발광체 복합소재 제조 및 가시광선 광촉매 반응)

  • Park, Jin-Woo;Kim, Jung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.688-693
    • /
    • 2008
  • This paper presents a study on the photocatalytic reaction about the composite particles of $TiO_2$-coated phosphors under visible light irradiation. Nanocrystalline titanium dioxide layers were directly coated on the alkaline earth aluminate phosphor, $CaAl_2O_4:Eu^{2+},\;Nd^{3+}$ particles by an sol-gel processing method. The photocatalytic reaction was analyzed with the degradation of methylene blue (MB) aqueous solution under UV and visible light irradiations. $TiO_2$-coated phosphor powders showed different photocatalytic mechanism, compared with pure $TiO_2$ (P-25, Degussa). Under UV-irradiation, $TiO_2$-coated phosphor powders showed slow photocatalytic reactivity in the early stage and fast in the latter, compared with that of pure $TiO_2$. However, $TiO_2$-coated phosphor powders showed much faster photocatalytic reactivity than that of pure $TiO_2$ under visible irradiation. In addition, the characterizations of the $TiO_2$-coated phosphor powders were conducted by a X-ray diffractometer (XRD), transmission electron microscope (TEM), and energy dispersive spectroscopy (EDS).

Photocatalytic Performance of Graphene-TiO2 Hybrid Nanomaterials Under Visible Light

  • Park, Jaehyeung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.161-164
    • /
    • 2019
  • This study describes the development of graphene-$TiO_2$ conjugates for the enhancement of the photocatalytic efficiency of $TiO_2$. Graphene-based hybrid nanomaterials have attracted considerable attention because of the unique and advantageous properties of graphene. In the proposed hybrid nanomaterial, graphene serves as an electron acceptor to ensure fast charge transfer. Effective charge separation can, therefore, be achieved to slow down electron-hole recombination. This results in an enhancement of the photocatalytic activity of $TiO_2$. In addition, increased adsorption and interactions with the adsorbed reagents also lead to an improvement in the photocatalytic activity of graphene-$TiO_2$ hybrid nanomaterials. The acquired result is encouraging in that the photocatalytic activity of $TiO_2$ was initiated using visible light (630 nm) instead of the typical UV light.

Synthesis and characterization of noble metal coupled N-TiO2 nanoparticles

  • Lee, Kyusang;Moon, Jiyeon;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.374.2-374.2
    • /
    • 2016
  • Volatile organic compounds (VOCs) in the atmosphere are harmful materials which influence indoor air environment and human health. Titanium dioxide ($TiO_2$) is photocatalyst extensively used in degradation of organic compound. To improve the photocatalytic activity in the visible light region, doping with non-metals element or loading noble metals on the surface of $TiO_2$ is generally proposed. In this study, N- doped $TiO_2$ having photocatalytic activity in visible light region was attached noble metal such as Pt, Ag, Pd, Au by coupling method. Catalytic activities of Noble metal coupled $N-TiO_2$ powders were evaluated by the improvement of their photocatalytic activities and the degradation of VOC gas. A UV-Vis spectrophotometer was used to measure the diffuse reflectance spectra of coupled $N-TiO_2$ sample. The photocatlytic activities of as prepared samples were characterized by the decoloration of aqueous MB solution under Xenon light source (UV and visible light). To measure of decomposition VOCs, ethylbenzene was selected for target VOC material and the concentration was monitored under UVLED irradiation in a closed chamber system. Adjusting the initial concentration of 10~12 ppm, to evaluate the removal characteristics by using the coupled $N-TiO_2$.

  • PDF

Enhanced Self-Cleaning Performance of Ag-F-Codoped TiO2/SiO2 Thin Films

  • Kim, Byeong-Min;Kim, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.620-626
    • /
    • 2018
  • Highly self-cleaning thin films of $TiO_2-SiO_2$ co-doped with Ag and F are prepared by the sol-gel method. The asprepared thin films consist of bottom $SiO_2$ and top $TiO_2$ layers which are modified by doping with F, Ag and F-Ag elements. XRD analysis confirms that the prepared thin film is a crystalline anatase phase. UV-vis spectra show that the light absorption of $Ag-F-TiO_2/SiO_2$ thin films is tuned in the visible region. The self-cleaning properties of the prepared films are evaluated by a water contact angle measurement under UV light irradiation. The photocatalytic performances of the thin films are studied using methylene blue dye under both UV and visible light irradiation. The $Ag-F-TiO_2/SiO_2$ thin films exhibit higher photocatalytic activity under both UV and visible light compared with other samples of pure $TiO_2$, Ag-doped $TiO_2$, and F-doped $TiO_2$ films.

Platinum Decoration of a 3D Oxidized Graphitic Carbon Nitride/Graphene Aerogel for Enhanced Visible-Light Photocatalytic Hydrogen Evolution

  • Thi Kieu Oanh Nguyen;Thanh Truong Dang;Tahereh Mahvelati-Shamsabadi;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.627-634
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has attracted considerable attention since its discovery for its catalysis of water splitting to hydrogen and oxygen under visible light irradiation. However, pristine g-C3N4 confers only low photocatalytic efficiency and requires surface cocatalysts to reach moderate activity due to a lack of accessible surface active sites. Inspired by the high specific surface area and superior electron transfer of graphene, we developed a strongly coupled binary structure of graphene and g-C3N4 aerogel with 3D porous skeleton. The as-prepared 3D structure photocatalysts achieve a high surface area that favors efficient photogenerated charge separation and transfer, enhances the light-harvesting efficiency, and significantly improves the photocatalytic hydrogen evolution rate as well. The photocatalyst performance is observed to be optimized at the ratio 3:7 (g-C3N4:GO), leading to photocatalytic H2 evolution of 16125.1 mmol. g-1. h-1 under visible light irradiation, more than 161 times higher than the rate achieved by bulk g-C3N4.

Improved Photolysis of Water from Ti Incorporated Double Perovskite Sr2FeNbO6 Lattice

  • Borse, P.H.;Cho, C.R.;Yu, S.M.;Yoon, J.H.;Hong, T.E.;Bae, J.S.;Jeong, E.D.;Kim, H.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3407-3412
    • /
    • 2012
  • The Ti incorporation at Fe-site in the double perovskite lattice of $Sr_2FeNbO_6$ (SFNO) system is studied. The Ti concentration optimization yielded an efficient photocatalyst. At an optimum composition of Ti as x = 0.07 in $Sr_2Fe_{1-x}Ti_xNbO_6$, the photocatalyst exhibited 2 times the quantum yield for photolysis of $H_2O$ in presence of $CH_3OH$, than its undoped counterpart under visible light (${\lambda}{\geq}420nm$). Heavily Ti-doped $Sr_2Fe_{1-x}Ti_xNbO_6$ lattice exhibited poor photochemical properties due to the existence of constituent impurity phases as observed in the structural characterization, as well as deteriorated optical absorption. The higher electron-density acquired by n-type doping seem to be responsible for the more efficient charge separation in $Sr_2Fe_{1-x}Ti_xNbO_6$ (0.05 < x < 0.4) and thus consequently displays higher photocatalytic activity. The Ti incorporated structure also found to yield stable photocatalyst.

Application of Cu-loaded One-dimensional TiO2 Nanorods for Elevated Photocatalytic Environmental Friendly Hydrogen Production

  • Kim, Dong Jin;Tonda, Surendar;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • Photocatalytic green energy H2 production utilizing inexhaustible solar energy has been considered as a potential solution to problems of energy scarcity and environmental contamination. However, the design of a cost-effective photocatalyst using simple synthesis methodology is still a grand challenge. Herein, a low-cost transition metal, Cu-loaded one-dimensional TiO2 nanorods (Cu/TNR) were fabricated using an easy-to-use synthesis methodology for significant H2 production under simulated solar light. X-ray photoelectron spectral studies and electron microscopy measurements provide evidence to support the successful formation of the Cu/TNR catalyst under our experimental conditions. UV-vis DRS studies further demonstrate that introducing Cu on the surface of TNR substantially increases light absorption in the visible range. Notably, the Cu/TNR catalyst with optimum Cu content, achieved a remarkable H2 production with a yield of 39,239 µmol/g after 3 h of solar light illumination, representing 7.4- and 27.7-fold enhancements against TNR and commercial P25, respectively. The notably improved H2 evolution activity of the target Cu/TNR catalyst was primarily attributed to its excellent separation and efficiently hampered recombination of photoexcited electron-hole pairs. The Cu/TNR catalyst is, therefore, a potential candidate for photocatalytic green energy applications.

Preparation and Photochemical Properties of Zn0.95Mn0.05 (Zn0.95Mn0.05의 제조 및 광화학적 특성)

  • Jung, Dong-woon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.560-564
    • /
    • 2009
  • ZnO and Mn-substituted $Zn_{0.95}Mn_{0.05}O$ were synthesized by using precipitation method. $Zn_{0.95}Mn_{0.05}O$ compound absorbed UV light as well as hole range of visible light ($400{\sim}800$ nm). Results obtained revealed that $Zn_{0.95}Mn_{0.05}O$ showed higher activity than P-25 for visible-photocatalytic degradation of 1,4- dichlorobenzene.

Photocatalytic Degradation of Methylene Blue by Pd/MWCNT/TiO2 under UV and Visible Light Irradiation

  • Choi, Jong Geun;Park, Chong-Yeon;Zhu, Lei;Meng, Ze-Da;Ghosh, Trisha;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.511-517
    • /
    • 2012
  • Pd/MWCNT/$TiO_2$ composites were synthesized by a sol-gel technique using multi-walled carbon nanotubes (MWCNT), palladium (II) chlorite ($PdCl_2$) and titanium tetrachloride ($TiCl_4$) as the carbon, palladium and titanium precursors. The Pd/MWCNT/$TiO_2$ composites prepared were characterized by BET surface area measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic activity of the composites was evaluated using the degradation of methylene blue (MB) under UV and visible light irradiation as a model.

Neodymium doped mixed metal oxide derived from CoAl-layered double hydroxide: Considerable enhancement in visible light photocatalytic activity

  • Khodam, Fatemeh;Amani-Ghadim, Hamid Reza;Aber, Soheil;Amani-Ghadim, Ali Reza;Ahadzadeh, Iraj
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.311-324
    • /
    • 2018
  • Herein,the Neodymium ion ($Nd^{3+}$) doped CoAl-LDH have been successfully prepared via co-precipitation method and was used as a precursor of Nd-doped CoAl-mixed metal oxides (MMO). The photocatalytic activity of doped LDH and MMO was investigated in the degradation of an azo dye, C.I. Acid Red 14, under visible light irradiation. DRS and PL analysis demonstrated decreasing in the band gap energy and recombination of photo-induced charge carriers of Nd-doped LDH and MMO compared with the pristine CoAL-LDH. Due to significant difference in photocatalytic performance. A power law empirical kinetic model was obtained for predicting the photocatalytic degradation efficiency.