• Title/Summary/Keyword: Visibility Sensor

Search Result 76, Processing Time 0.031 seconds

Development of 3D CSGNSS/DR Integrated System for Precise Ground-Vehicle Trajectory Estimation (고정밀 차량 궤적 추정을 위한 3 차원 CSGNSS/DR 융합 시스템 개발)

  • Yoo, Sang-Hoon;Lim, Jeong-Min;Jeon, Jong-Hwa;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.967-976
    • /
    • 2016
  • This paper presents a 3D carrier-smoothed GNSS/DR (Global Navigation Satellite System/Dead Reckoning) integrated system for precise ground-vehicle trajectory estimation. For precise DR navigation on sloping roads, the AHRS (Attitude Heading Reference System) methodology is employed. By combining the integrated carrier phase of GNSS and DR sensor measurements, a vehicle trajectory with an accuracy of less than 20cm is obtained even when cycle slip or change of visibility occur. In order to supplement the weak GNSS environment with DR successfully, the DR sensor is precisely compensated for using GNSS Doppler measurements when GNSS visibility is good. By integrating a multi-GNSS receiver with low-cost IMU, a precise 3D navigation system for land vehicles is proposed in this paper. For real-time implementation, a decoupled Kalman filter is employed in the integrated system. Through field experiments, the performance of the proposed system is verified in various road environments, including sloping roads, good-visibility areas, high multi-path areas, and under-ground parking areas.

Real-time Road-Visibility Measurement Using CCTV Camera (CCTV 카메라를 이용한 실시간 도로시정 측정)

  • Kim, Bong-Geun;Jang, In-Su;Lee, Gwang
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.125-138
    • /
    • 2011
  • The highway visibility reduction caused by fog is one of the major elements of traffic accidents. Though the fog warning systems can lead drivers into safe driving by letting them aware dangerous situations in advance, the optical sensors, such as fog sensor, has been extremely costly. Through recent studies, it is delivered that visibility measurements have become obtainable with relatively cheap cameras and their functionality is as similar as a driver' visual sense. Those measurements however require additional signs or ROI, so it is still costly and unable to utilize the conventional images from the existing systems. This study proposes a new method to detect the visibility in real time based on the conventional images from the existing CCTV cameras. The proposed method builds a road model and extracts and applies vehicle movements and visible lines - those highlight easy and quick visibility measurements. The proposed method has advantages of both (1) having possible day and night visibility measurements similar to drivers' visual sense and (2) being easily applied to the existing CCTV system without additional devices. This paper presents field experiments using images acquired from the Central Inland Expressway and discusses future research directions.

Algorithm Development of a Visibility Monitoring Technique Using Digital Image Analysis

  • Pokhrel, Rajib;Lee, Hee-Kwan
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.8-20
    • /
    • 2011
  • Atmospheric visibility is one of the indicators used to evaluate the status of air quality. Based on a conceptual definition of visibility as the maximum distance at which the outline of the selected target can be recognized, an image analysis technique is introduced here and an algorithm is developed for visibility monitoring. Although there are various measurement techniques, ranging from bulk and precise instruments to naked eye observation techniques, each has their own limitations. In this study, a series of image analysis techniques were introduced and examined for in-situ application. An imaging system was built up using a digital camera and was installed on the study sites in Incheon and Seoul separately. Visual range was also monitored by using a dual technology visibility sensor in Incheon and transmissometer in Seoul simultaneously. The Sobel mask filter was applied to detect the edge lines of objects by extracting the high frequency from the digital image. The root mean square (RMS) index of variation among the pixels in the image was substantially correlated with the visual ranges in Incheon and Seoul with correlations of $R^2$=0.88 and $R^2$=0.71, respectively. The regression line equations between the visual range and the RMS index in Incheon and Seoul were VR=$2.36e^{0.46{\times}(RMS)}$ and VR=$3.18e^{0.15{\times}(RMS)}$, respectively. It was also confirmed that the fine particles ($PM_{2.5}$) have more impacts to the impairment of visibility than coarse particles.

A real-time image-based sea fog observation system based on local lighthouse (항로표지 거점을 활용한 실시간 영상기반 해양안개 관측시스템 구축)

  • Mookun Kim;In-kwon Jang;Hyeong-ui Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.23-26
    • /
    • 2023
  • In the past, in observing the sea fog on the major sea route and providing real-time information for the safe operation of ships, a visibility sensor or a fog detector with similar operating principles was installed to observe local fog near the place where it was installed. However, it was somewhat unreasonable to immediately provide sea fog observation information to ships and users because the reliability of real-time observation information was somewhat low due to pollution caused by dust, salt, and pollen, or malfunctions of detection sensors by organisms such as spider webs. From 2019 to 2022, the Korea Meteorological Administration and the Ministry of Oceans and Fisheries collaborated to build a more reliable real-time image-based sea fog observation system in 100 regions of the Lighthouse on major sea routes across the country to collect reliable sea fog observation information every 10 minutes and perform real-time public service(webpage).

  • PDF

Design and Implementation of Sensor-based Secondary Vehicle Accident Prevention System (센서 기반의 차량 2차사고 방지 시스템 설계 및 구현)

  • Lim, Kyung-Gyun;Kim, Gea-Hee;Jeong, Seon-Mi;Mun, Hyung-Jin;Kim, Chang-Geun
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.313-321
    • /
    • 2017
  • Traffic accidents in the country have steadily increased. Although IOT technologies have been applied so as to prevent the primary accident, practical solutions to prevent the secondary accident have not been suggested. A general guideline is simply recommended. In this paper, utilizing existing communication technology, we implement a proposed model and its simulation to prevent the secondary accident. When it is possible for a driver to secure visibility, the secondary accident can be prevented; In areas like tunnel, mountain terrain, and curve road with heavy traffic, where the driver has difficulty in securing the visibility, the secondary accident rates after the primary accident have been increasing. Therefore, we implement an accident prevention system that determines the primary accident utilizing sensor technology and prevents the secondary accident communicating through V2V or V2I. After the simulation, we found that the proposed model and the existing model made no difference with regard to the secondary accident rates when the visibility of the driver is secured; With the application of the proposed model, however, the accident rates decreased for 3-7 percent even though the visibility and communication were not secured.

Development of Evaluation System for Visibility of Variable Message Sign (VMS의 시인성 향상을 위한 시인성 성능평가 항목 및 평가기준 설정과 물리적 평가시스템 구축)

  • Lee, Sang Hyup;Baik, Nam Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.219-223
    • /
    • 2006
  • Variable Message Sign(VMS) is one of the most popular travel information system. In this study, the evaluation categories, each category's datum value and evaluation procedure for enhancing the visibility of VMS are studied and the physical evaluation system is developed. The evaluation categories have been developed based on the analysis of previous guidelines used in Korea, Europe and the United States. The evaluation categories include luminance, luminance ratio, beam width, color, and uniformity. The physical evaluation system consists of goniometer, solar simulator, luminance meter, sensor and rack system. As a result of this study, the quantitative and effective evaluation of VMS visibility would become possible.

Implementation of Vehicle Wiper Control System Using Image Sensor (이미지 센서를 이용한 차량 와이퍼 제어 시스템 구현)

  • Jeon, Jin-Young;Chang, Hyun-Sook;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.259-265
    • /
    • 2014
  • When raining or snowing, windshield wiper system is very important for safety of driver. However, manual wiper system frequently needed to be controlled for sufficient visibility and it was very uncomfortable. So, rain sensor which controls automatically was developed. This rain sensor technology uses optical sensing technique sensed the rainfall by receiving reflected light of rain dropped on the windshield. The technology used optical sensor was simple and easy to implement as a rain sensing system in the car. However, it is sometime shown low accuracy to measure rainfall on the windshield when affected by ambient lights from surroundings. It is also given inconvenience to the driver to control the car. To solving these problems, we propose a rain sensing system using image sensor and the fuzzy wiper control algorithm.

Bird's-Eye View Service under Ubiquitous Transportation Sensor Network Environments (Ubiquitous Transportation Sensor Network에서 Bird's-Eye View 서비스)

  • Kim, Joohwan;Nam, Doohee;Baek, Sungjoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • A bird's-eye view is an elevated view of an object from above, with a perspective as though the observer were a bird, often used in the making of blueprints, floor plans and maps. It can be used under severe weather conditions when visibility is poor. Under low visibility environments, drivers can communicate each other using V2V communication to get each vehicle's status to prevent collision and other accidents. Ubiquitous transportation sensor networks(u-TSN) and its application are emerging rapidly as an exciting new paradigm to provide reliable and comfortable transportatione services. The ever-growing u-TSN and its application will provide an intelligent and ubiquitous communication and network technology for traffic safety area.

Fog Generated Field Test for Criteria of Sign Size of Variable Speed Limit Signs (가변 제한속도 표지판 크기기준 정립을 위한 안개재현 현장실험)

  • Kim, Yongseok;Lee, Sukki;Kim, Soullam
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.87-96
    • /
    • 2016
  • OBJECTIVES : A fog generated field test was conducted to analyze the relationship between different sizes of variable speed limit signs and the legibility distance under various fog density conditions. By using this study, appropriate sizes of signs can be selected depending on the density of fog. METHODS : An actual tunnel was selected as the area for this test, as other places cannot maintain the fog condition because of rapid air current. A total 121 subjects were recruited for this test, which took place over the course of four days. The test on the first day was conducted under normal weather conditions for comparison. Visibility-distance detecting sensor was used to measure the visibility distance due to the fog density time, simultaneously with the evaluation of legibility distance by subjects. RESULTS : The test results show the relationship between the different sizes of signs and the legibility distance corresponding to the visibility distance due to both non-fog and fog generated conditions. According to the technical test results, appreciable amount of reduction in legibility distance due to fog was resulted in all sizes of signs. Moreover, the legibility distance is reduced proportionately with the decrease in the visibility distance due to fog. CONCLUSIONS : The results of this study can be used to select appropriate sizes of valuable speed signs under fog conditions. Hence, drivers can expect to have more room to respond to adverse weather conditions, thereby reducing the risk of accidents.

Traffic Light Detection Method in Image Using Geometric Analysis Between Traffic Light and Vision Sensor (교통 신호등과 비전 센서의 위치 관계 분석을 통한 이미지에서 교통 신호등 검출 방법)

  • Choi, Changhwan;Yoo, Kook-Yeol;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.101-108
    • /
    • 2015
  • In this paper, a robust traffic light detection method is proposed by using vision sensor and DGPS(Difference Global Positioning System). The conventional vision-based detection methods are very sensitive to illumination change, for instance, low visibility at night time or highly reflection by bright light. To solve these limitations in visual sensor, DGPS is incorporated to determine the location and shape of traffic lights which are available from traffic light database. Furthermore the geometric relationship between traffic light and vision sensor is used to locate the traffic light in the image by using DGPS information. The empirical results show that the proposed method improves by 51% in detection rate for night time with marginal improvement in daytime environment.