• Title/Summary/Keyword: Viscosity Equation

Search Result 392, Processing Time 0.029 seconds

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

Numeric Analysis of 2-Dimensional Nonlinear Viscous Free-Surface Wave Problems (점성을 고려한 2차원 비선형 자유표면파 문제의 수치해석)

  • Y.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.98-111
    • /
    • 1993
  • Two-dimensional nonlinear free-surface wave problems are analyzed with consideration of viscosity. Navier-Stokes equation and continuity equation are solved by the application of Finite Analytic Method, and MAC scheme is used far the treatment of free surface. Surface tension effect is also considered and laminar flow is assumed. The free-surface waves in shallow water, the flows around a vortex-pair with free surface and the wave ahead of a rectangular body are simulated to test the present numerical scheme. In the shallow water problem, viscous effect due to the friction on the bottom is observed. In the second problem, the approach of a vortex-pair to the free surface is simulated to examine the interaction of vortex-pair with the free surface. In the third problem, the wave ahead of a semi-infinite floating body is simulated.

  • PDF

Numerical Simulation of Immiscible Water-Gas Simultaneous Flow in the absence of Capillary Force in a Single Fracture (단일절리에서 모세관압을 고려하지 않은 불혼합성 물과 가스의 동시거동 해석)

  • 한일영;서일원
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.69-81
    • /
    • 2001
  • The constitutive relation among capillary pressure, saturation and relative permeability should be predetermined in order to simulate immiscible water-gas flow in porous media. The relation between saturation and relative permeability becomes more important when the capillary force can be disregarded and viscous friction force governs the flow. In this study, a 2-dimensional finite difference numerical model was developed, in which the variation of viscosity with pressure and that of relative permeability with water saturation can be treated. Seven cases of parallel plate tests were performed in order to obtain the characteristic equation of relative permeability which would be used in. the developed numerical model. It was not possible, however, to match the curves of relative permeability from the plate tests with the existing emperical models. Consequently a logistic equation was proposed as a new emperical model. As this model was composed of the parameter involving aperture size, any aperture size of fracture can be applied to the model. For the purpose of verification, the characteristic equation of relative permeability was applied to the developed numerical model and the computed results were compared with those of plate test. As a result of application of numerical model, in order to check the field applicability, to single fracture surrounding an underground storage cavern, the simultaneous flow of water and propane gas was able to be simulated properly by the model.

  • PDF

Diffusion Characteristics of Fatty Acid using Supercritical Fluid Chromatographic Method (초임계유체 크로마토그래피를 이용한 지방산의 확산특성 해석)

  • Lee, Seung Bum;Seong, Dae Hyung;Kim, Hyung Su;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1043-1052
    • /
    • 1996
  • Supercritical fluid chromatographic method was recommended as an alternative separation method of fatty acids of the conventional method such as distillation or extraction. Although diffusion characteristics are varied by the carbon numbers and the degree of unsaturation of fatty acids, the quantitative data were so rare that the commercialization of supercritical fluid chromatographic method has been hindered. In this study, diffusion coefficients of fatty acids which are differently unsaturated are measured by CPB method in the range of 308.15K to 328.15K and 13MPa to 17MPa in supercritical carbon dioxide. A decrease in the binary diffusion coefficient was observed with an increase in temperature and pressure. Also, the decrease in the binary diffusion coefficient with increasing fluid density and viscosity. Wilke-Chang equation, Funazukuri empirical equation, and Matthews-Akgerman equation are used to correlate the experimental diffusion coefficients of fatty acids in supercritical carbon dioxide. Among the various theoretical equations, Matthews-Akgerman equation based on RHS theory was suggested as a more successful correlation model with experimental data.

  • PDF

A Three-Dimensional Galerkin-FEM Model with Density Variation (밀도 변화를 포함하는 3차원 연직함수 전개모형)

  • 이호진;정경태;소재귀;강관수;정종율
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • A three-dimensional Galerkin-FEM model which can handle the temporal and spatial variation of density is presented. The hydrostatic approximation is used and density effects are included by means of conservation equation of heat and the equation of state. The finite difference grids are used in the horizontal plane and a set of linear-shape functions is used for the vertical expansion. The similarity transform is introduced to solve resultant matrix equations. The proposed model was first applied to the density-driven circulation in an idealized basin in the presence of the heat exchange between the air and the sea. The advection terms in the momentum equation were ignored, while the convection terms were retained in the heat equation. Coefficients of the vertical eddy viscosity and diffusivity were fixed to be constant. Calculation in a non-rotating idealized basin shows that the difference in heat capacity with depth gives rise to the horizontal gradient of temperature. Consequently, there is a steady new in the upper layer in the direction of increasing depth with compensatory counter flow .in the lower layer. With Coriolis force, geostrophic flow was predominant due to the balance between the pressure gradient and the Coriolis force. As a test in region of irregular topography, the model is applied to the Yellow Sea. Although the resultant flow was very complex, the character of the flow Showed to be geostrophic on the whole.

  • PDF

Dynamic Behaviour of Granular Meterial during the Rapid Motion (급속운동을 하는 입자물질의 동적거동)

  • Hwang, Hak
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-118
    • /
    • 1994
  • The rapid motion of granular material is microscopically observed, and investigated by continuum theory. From the binary collision phenomenon two different times are introduced : flying time and contact time. The former says the non -stationary motion and at a same time the variation of bulk volume. The latter is operative by a delayed time during the contact and describes the elastic properties of granular material. With both times a dynamic constitutive equation is postulated for four state variables : dispersive pressure, viscosity, thermal diffusivity and energy annihilation rate. The balance laws of mass, momentum and energy which are represented through above four variabls, are applied to the model, in which due to the elastic property the relaxation and energy absorption are explained.

  • PDF

DEVELOPMENT OF EULERIAN-GRANULAR MODEL FOR NUMERICAL SIMULATION MODEL OF PARTICULATE FLOW (Eulerian-Granular method를 사용한 고체 입자 유동 모델 개발)

  • Lee, T.G.;Shin, S.W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we have developed numerical model for particulated flow through narrow slit using Eulerian-Granular method. Commercial software (FLUENT) was utilized as simulation tool and main focus was to identify the effect from various numerical options for modeling of solid particles as continuos phase in granular flow. Gidaspow model was chosen as basic model for solid viscosity and drag model. And lun-et-al model was used as solid pressure and radial distribution model, respectively. Several other model options in FLUENT were tested considering the cross related effect. Mass flow rate of the particulate through the slit was measured to compare. Due to the high volume density of the stacked particulates above the slit, effect from various numerical options were not significant. The numerical results from basic model were also compared with experimental results and showed very good agreement. The effects from the characteristics of particles such as diameter, angle of internal friction, and collision coefficient were also analyzed for future design of velocity resistance layer in solar thermal absorber. Angle of internal friction was found to be the dominat variable for the particle mass flow rate considerably. More defined 3D model along with energy equation for complete solar thermal absorber design is currently underway.

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

Characteristics of the Interfacial Friction Factor in Countercurrent Two-Phase Flows (반류 2상유동에서의 계면마찰계수의 특성)

  • 이상천;김동수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.299-307
    • /
    • 1991
  • A unified correlation of the interfacial friction factor for air-water and steam-water flows in inclined rectangular channels has been developed. The correlation was expressed in the form of a power law of the liquid and the gas Reynolds number, and the liquid-to-gas viscosity ratio. In addition, a relation between the equivalent roughness and the intensity of wave height fluctuation of the interface has been investigated. A new dimensionless intensity of fluctuation including a liquid film Reynolds number is proposed. It has been shown that the dimensionless equivalent roughness, which is calculated from the Nikuradse equation, can be uniquely related to this dimensionless intensity of fluctuation for both air-water and steam-water flows.

Interaction of ct-DNA with 2,4-Dihydroxy Salophen

  • Azani, Mohammad-Reza;Hassanpour, Azin;Bordbar, Abdol-Khalegh;Mirkhani, Valiollah
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1973-1977
    • /
    • 2009
  • In the present study, at first, 2,4-Dihydroxy Salophen (2,4-DHS), has been synthesized by combination of 1, 2-diaminobenzene and 2,4-dihydroxybenzaldehyde in a solvent system. This ligand containing meta-quinone functional groups were characterized using UV-Vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and 2,4-DHS, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of 2,4-DHS with ct-DNA was found to be (1.1 ${\pm}\;0.2)\;{\times}\;10^4\;M^{-1}.$ The fluorescence study represents the quenching effect of 2,4-DHS on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of 2,4-DHS concentration. Thermal denaturation experiments represent the increasing of melting temperature of DNA (about 3.5 ${^{\circ}C}$) due to binding of 2,4-DHS. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.