• Title/Summary/Keyword: Viscosity Equation

Search Result 392, Processing Time 0.026 seconds

Calculation of Two-Phase Turbulent Jet with a Two-Equation Model (2-方程式 모델 에 의한 二相亂流 제트流動 의 數値解析)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.714-724
    • /
    • 1985
  • Two-phase(air-solid, air-liquid droplet) turbulent round jet has been analyzed numerically using two equation turbulence model. The mean motion of suspending particles in air has been treated as the secondary fluid with virtual density and eddy viscosity. In this paper, the local mean velocity of secondary fluid is not assumed to be the same as that of the primary one. Dissipation rate of turbulent kinetic energy which arises because the particles can not catch up with the turbulent fluctuations of the primary fluid has been modelled by using the concept of Kolmogorov's spectral energy transfer. Numerical computations were performed for flows with different volume fraction of the dispersed phase and the diameter of particle. Results show that the total rate of turbulent energy dissipation, turbulent intensities and spreading rate of jets are reduced by the increase of volume fraction of dispersed phase. However it does not show consistent tendency with increasing the particle diameter. This investigation also shows that presence of particles in the fluid modifies the structure of the primary fluid flow significantly. Predicted velocity profiles and turbulence properties qualitatively agree with available data.

Numerical Modelling of Longshore Currents using $\textsc{k}$-ι Turbulence Closure ($\textsc{k}$-ι 난류모형을 이용한 연안류 수치해석)

  • 유동훈;김창식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.234-244
    • /
    • 1994
  • Longshore currents driven by monochromatic waves have been described using 2-equation $textsc{k}$-ι turbulence transport model. When using $textsc{k}$-ι closure both profiles of eddy viscosity and current velocity are found to be satisfactory. Several terms of ι equation are related to various variables concerned with turbulence mechanism. New form of turbulence frequency used in ι equation is suggested in the present approach, and non-dimensional parameters are evaluated by comparing the computational results with the laboratory measurements. Various values of a large range are applied to the non-dimensional parameters for the sensitivity test and in order to improve the predictability common values of constants are deduced, which produce similarly good computational results for the well-controlled laboratory measurements.

  • PDF

Correlation between Volume and Pressure of Dichloromethane using Equation of State (상태방정식을 이용한 디클로로메탄의 부피와 압력간 상관관계 연구)

  • Kwon, Woong;Kim, Jiyun;Lee, Kwonyun;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.141-146
    • /
    • 2021
  • Supercritical fluid has excellent dissolving power for various materials based on low viscosity and high diffusion coefficient and is used as solvents in various chemical processes. However, its industrial application can be very tricky because the design, especially the size of the supercritical apparatus, should be carefully chosen to optimize the cost and the production of supercritical fluidic state. And the first step of the supercritical fluid apparatus design is to choose the appropriate size of the reactor vessel to produce supercritical fluid above its critical pressure and temperature. Therefore, this study aims to analyze thermodynamic behaviors of dichloromethane based on ideal gas, van der Waals, Redlich-Kwong, Soave-Redlich-Kwong, and Peng-Robinson equations of state. The correlation between the volume and pressure of dichloromethane at 200℃ was revealed and it can be used to design the optimized size of the supercritical apparatus for industrial production.

Synthetic Conditions and Rheological Characteristics of Barium Sulfate (황산바륨의 합성조건과 유동학적 특성)

  • Shin, Wha-Woo;Kim, Jun-Hea;Choi, Kwang-Sik;Chang, Young-Soo;Lee, Kwang-Pyo
    • YAKHAK HOEJI
    • /
    • v.36 no.6
    • /
    • pp.538-547
    • /
    • 1992
  • Optimal synthetic condition of barium sulfate were investigated from the viewpoint of yield and bulkiness according to a randomized complete block design proposed by G.E.P. Box and K.B. Wilson. Barium chloride and magnesium sulfate were utilized as reactants in order to prepare barium sulfate in this study. It was found that optimum temperature range of reactant solutions was $60{\sim}100^{\circ}C$ and the optimum concentration range of the reactant solutions was $10{\sim}17.3%$ and $10{\sim}20%$ respectively, on the viewpoint of yield and bulkiness. The optimum mole ratio of $BaCI_2$ to $BaSO_4$ was in the range of $1.50{\sim}2.0$ and the optimum mole ratio of $BaCI_2$ to $BaSO_4$ was in the range of $1.50{\sim}2.0$ and the optimum reacting time range was $15{\sim}20$ minutes. The optimum drying temperature range was $110{\sim}130^{\circ}C$ from the viewpoint of yield, but it was $90{\sim}110^{\circ}C$ on the basis of bulkiness. Apparent viscosity of barium sulfate suspensions dispersed in various concentrations of Na. CMC was measured by using Brookfield synchrolectric viscometer model LVT, the relative equation, log ${\eta}_{sp}=A+B.{\phi}$ was examined and the equation was found to agree fairly well. 1 w/v% Na. CMC aqueous solution and 0.1 volume fraction of $BaSO_4$ powder were optimum in the preparation of $BaSO_4$ suspension showing highest viscosity at infinite shearing.

  • PDF

Improvement of the Lubrication Characteristics of Fuel Injection Pump for Medium-Speed Diesel Engines: Part II - Application of Grooves (연료분사펌프의 윤활 특성 개선: 제2부 - 그루브의 적용)

  • Hong, Sung-Ho;Lee, Bora;Cho, Yongjoo
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.213-220
    • /
    • 2015
  • This study evaluates the effect of grooves on the stem part of a plunger on the lubrication characteristics of a fuel injection pump (FIP) by using hydrodynamic lubrication analysis. The current study uses the two-dimensional Reynolds equation to evaluate the changes in lubrication characteristics with variations in clearance, viscosity, and grooves for a laminar, incompressible, and unsteady state flow. This study investigates the lubrication characteristics by comparing the dimensionless minimum film thickness or the film parameter, which is the ratio of the minimum film thickness to surface roughness. The analysis method for the groove section differs depending on the depth of the groove. For instance, in the case of a shallow groove, the film thickness equation considers the depth of the groove, while in the case of a deep grove, it considers the flow continuity. The lubrication characteristics of the FIP are more sensitive to changes in the groove width than to changes in other design variables. Moreover, the application of a groove is more effective under low viscosity conditions. The smaller the distance from the edge of the stem part to the first groove in the case of shallow grooves, the better are the lubrication characteristics of the FIP. In contrast, in the case of deep grooves, the lubrication characteristics of the FIP improve as the distance increases. The application of shallow grooves is more effective for improving the lubrication characteristics than the application of deep grooves.

Rheological Studies on Barley Starch-Water Systems (보리전분 수용액계의 리올로지적 연구)

  • Lee, Shin-Young;Choi, Jun-Bok;Chun, Byong-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.131-135
    • /
    • 1985
  • The rheological studies on dilute and concentrate solutions of naked and covered barley starches were carried out with various viscosimeters. The rheology of dilute solutions (0.05-0.3%) were characterized by intrinsic viscosity and related parameter according to Huggins equation. Also, the rheology of the solutions of higher concentrations (1-5%) were characterized by time dependent characteristics and pseudoplastic behaviors. The values of consistency index according to the power equation were exponen tially dependent upon concentration and temperature. The results showed that the rheological properties could differ greatly due to difference in varieties. The naked barley starch exhibited higher intrinsic viscosity, more thixotropic behavior and more dependence of consistency index on concentration and temperature than the covered barley starch.

  • PDF

A Study on Nonlinear Interaction of Tidal Current and Wind-Induced Current using a Point Model (점모형을 이용한 조류와 취송류의 비선형 상호작용)

  • 이종찬;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.28-36
    • /
    • 1996
  • The influence of vertical eddy viscosity to the nonlinear interaction of tidal current and wind-induced current is examined using a point model. A zero-equation turbulence model is derived by simplifying the q$^2$-q$^2$1 turbulence model under the assumption that the generation of turbulence kinetic energy is balanced with its dissipation and is further modified to include the depth of frictional influence properly The zero-equation turbulence model is derived and the possibility of resonance in the presence of Coriolis effect is suggested. The amplitudes of tidal currents remain the same regardless of the applied wind stress, but the over-tide component is generated due to the nonlinear interaction of tidal current and wind-induced current. Significant changes in the vertical profile of wind-induced currents can occur according to tide-induced background turbulence. The turbulence model can give rise to misleading results when applied to the wind-driven circulation in the tide-dominated sea such as Yellow Sea unless the tide-induced background turbulence is adequately included in the parameterization of vertical eddy viscosity.

  • PDF

A Mathematical Model of Return Flow outside the Surf Zone (쇄파대(碎波帶) 밖에서 return flow의 수학적(數學的) 모형(模型))

  • Lee, Jong Sup;Park, II Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.355-365
    • /
    • 1994
  • An analytical model of return flow is presented outside the surf zone. The governing equation is derived from the Navier-Stokes equation and the continuity. Each term of the governing equation is evaluated by the ordering analysis. Then the infinitesimal terms, i.e. the turbulent normal stress, the squared vertical velocity of water particle and the streaming velocity, are neglected. The driving forces of return flow are calculated using the linear wave theory for the shallow water approximation. Especially, the space derivative of local wave heights is described considering a shoaling coefficient. The vertical distribution of eddy viscosity is discussed to the customary types which are the constant, the linear function and the exponential function. Each coefficient of the eddy viscosities which sensitively affect the precision of solutions is uniquely decided from the additional boundary condition which the velocity becomes zero at the wave trough level. Also the boundary conditions at the bottom and the continuity relation are used in the integration of the governing equation. The theoretical solutions of present model are compared with the various experimental results. The solutions show a good agreement with the experimental results in the case of constant or exponential function type eddy viscosity.

  • PDF

Numerical Simulation of Buoyant flume Dispersion in a Stratified Atmosphere Using a Lagrangian Stochastic Model

  • Kim, Hyun-Goo;Noh, Yoo-Jeong;Lee, Choung-Mook;Park, Don-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.440-448
    • /
    • 2003
  • In the present paper, numerical simulations of buoyant plume dispersion in a neutral and stable atmospheric boundary layer have been carride out. A Lagrangian Stochastic Model (LSM) with a Non-Linear Eddy Viscosity Model (NLEVM) for turbulence is used to generate a Reynolds stress field as an input condition of dispersion simulation. A modified plume-rise equation is included in dispersion simulation in order to consider momentum effect in an initial stage of plume rise resulting in an improved prediction by comparing with the experimental data. The LSM is validated by comparing with the prediction of an Eulerian Dispersion Model (EDM) and by the measured results of vertical profiles of mean concentration in the downstream of an elevated source in an atmospheric boundary layer. The LSM predicts accurate results especially in the vicinity of the source where the EDM underestimates the peak concentration by 40% due to inherent limitations of gradient diffusion theory. As a verification study, the LSM simulation of buoyant plume dispersions under a neutral and stable atmospheric condition is compared with a wind-tunnel experiment, which shows good qualitative agreements.

Viscosities of Tetraalkylammonium Chloride Solutions in Isopropanol-Water Mixtures at $30^{\circ}C$ (2-프로판올-물 혼합용매중의 tetraalkylammonium chloride 용액의 점도에 관한 연구)

  • Byung-Rin Cho;Young-Ja Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.159-163
    • /
    • 1971
  • The relative viscosities ${\eta}_r$ of a series of homologous tetraalkylammonium chlorides $Me_4NCl,\;Et_4NCl,\;Pr_4NCl\;and\;Bu_4NCl$ in a series of isopropanol-water mixtures have been determined at $30^{\circ}C$ using Ubbelohde-type viscometers. The viscosity data have been interpreted in terms of viscosity A-and B-coefficients calculated from the Jones-Dole equation, ${\eta}_r=1+AC^{1/2}+BC$. The results indicate that the structure-breaking effect of chloride ion is maximum at 0.l~0.15 mole fraction isopropanol, while the size effect(Einstein effect) of the larger $R_4N^+$ ions is maximum at 0.2~0.25 mole fraction. The results also indicate that in aqueous and water-rich solutions the larger $R_4N^+$ ions (e.g. $Pr_4N+, Bu_4N^+$) appear to be excellent structure-formers and that the viscosities of solutions is not strongly affected by the electrostriction effect of chloride ion.

  • PDF