DOI QR코드

DOI QR Code

Calculation of Two-Phase Turbulent Jet with a Two-Equation Model

2-方程式 모델 에 의한 二相亂流 제트流動 의 數値解析

  • Published : 1985.11.01

Abstract

Two-phase(air-solid, air-liquid droplet) turbulent round jet has been analyzed numerically using two equation turbulence model. The mean motion of suspending particles in air has been treated as the secondary fluid with virtual density and eddy viscosity. In this paper, the local mean velocity of secondary fluid is not assumed to be the same as that of the primary one. Dissipation rate of turbulent kinetic energy which arises because the particles can not catch up with the turbulent fluctuations of the primary fluid has been modelled by using the concept of Kolmogorov's spectral energy transfer. Numerical computations were performed for flows with different volume fraction of the dispersed phase and the diameter of particle. Results show that the total rate of turbulent energy dissipation, turbulent intensities and spreading rate of jets are reduced by the increase of volume fraction of dispersed phase. However it does not show consistent tendency with increasing the particle diameter. This investigation also shows that presence of particles in the fluid modifies the structure of the primary fluid flow significantly. Predicted velocity profiles and turbulence properties qualitatively agree with available data.

본 논문에서는 입자가 부상된 2상유동의 해석에서 여러유동조건의 유동을 공 통적으로 해석할 수 있고 또 유동의 난류구조를 규명할 수 있도록 하기 위해서 2-방정 식 난류모델을 적용하였고 또 지배방정식들 속에 나타나는 1유체와 2유체의 2차 상관 관계들을 모형화 할 때 Taweel and Landau의 스펙트럼 이론을 확장발전시켜 적용하였 다.

Keywords