• Title/Summary/Keyword: Viscoelastic property

Search Result 109, Processing Time 0.023 seconds

Development of Fatigue Performance Model of Asphalt Concrete using Dissipate Energy

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.39-43
    • /
    • 2010
  • The main objective of this research is to develop a mechanistic performance predictive model for fatigue cracking of asphalt-aggregate mixtures. Controlled-stress diametral fatigue tests were performed to characterize fatigue cracking of asphalt-aggregate mixtures. Performance prediction model for fatigue cracking was developed using the internal damage ratio (IDR) growth method. In the IDR growth method, the general concepts of the dissipated energy, the reference tensile strain, the threshold tensile strain, and the strain shift factor were introduced. The source of the dissipated energy in the fatigue test is from the intrinsic viscoelastic material property of an asphalt concrete mixture and the damage growth within the asphalt concrete specimen. In controlled-stress mode test, the dissipated energy is gradually increased with an increasing number of load applications.

Preparation of Environmental Friendly High-Solid Coatings and Their Property Changes with Solid Contents (환경친화성 하이솔리드 도료의 제조 및 고형분 함량에 따른 도막물성 변화)

  • Park, Hong-Soo;Jo, Hye-Jin;Shim, Il-Woo;You, Hyuk-Jae;Kim, Young-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.116-122
    • /
    • 2005
  • Room temperature cure type of acryl-urethane coatings with high solid content were prepared in this study. Acrylic resins with 80% solid content were cured with hexamethylene diisocyanate (Desmodure N-3600). The cure time of prepared coatings BEHCC-84 (BEHC-84 : $T_g=0^{\circ}C$) and BEHCC-87 (BEHC-87 : $T_g=30^{\circ}C$), measured by rigid-body pendulum method, was recorded 8.3 hours and 3.8 hours, respectively. Dynamic viscoelastic experiment also revealed the glass transition temperature of BEHCC-84 and BEHCC-87 to be $T_g=40.3^{\circ}C$ and $T_g=43.3^{\circ}C$, respectively. It was found that the adhesion and flexural properties among various propeties of coatings were enhanced by the incorporation of caprolactone acrylate monomer into the acrylic resins.

A STUDY ON THE VISCO-ELASTIC PROPERTIES OF FOUR CURRENTLY USED TISSUE CONDITIONERS (수종의 조직 양화재에서 탄성 변형과 복원에 관한 연구)

  • Choi Sung-Ho;Shim June-Sung;Moon Hong-Seok;Chung Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.35-47
    • /
    • 2003
  • The dimensional stability of tissue conditioners characterizes the ability of the materials to yield accurate functional impressions of oral mucosa. This study evaluated the viscoelastic property and the linear dimensional changes with the factor of time and thickness of tissue conditioners ($COE-COMFORT^{TM}$, Visco-gel. $COE-SOFT^{TM}$, Soft-Liner). The thickness of these materials were changed (1.5mm, 3.0mm) and the percentage changes in dimension were measured at 1h, 12h, 24h, 36h, 3day, 7day after specimen preparation. From the results large differences appear between the various tissue conditioners. The results suggest that the period recommended for forming functional impression would be 2-3days after insertion in the mouth. in addition. it is important to select tissue conditioners suitable for functional impression because of the wide range of dimensional stability among the materials.

Elastic Modulus Extraction of Wire Mesh for Vibration Mount Development (방진마운트 개발을 위한 와이어 메쉬 탄성계수 추출)

  • Kim, Tae-Yeon;Shin, Yun-ho;Moon, S.J.;Jung, B.C.;Lee, T.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.806-813
    • /
    • 2016
  • To alleviate the vibration problem or to satisfy the required criteria for manifesting the guaranteed performance of precise equipment, various vibration isolation materials or apparatus, such as viscoelastic material, air and coil spring, have been developed and applied. Among them, a wire mesh material is regarded as one of the good candidate for reducing the vibration in terms of moderate material price, easy shape machining and long life cycle without the property deterioration induced by the aging or environmental effects. In this paper, prior to wire mesh isolator design, the static and dynamic elastic modulus of wire mesh materials are extracted from the experiment by the simple shaped cylindrical specimens and their characteristics for applying to vibration isolator design are examined. The simple shaped specimens were made as considering the design parameters of a wire mesh mount; i.e. the density, wire diameter and wire mesh slope, and the sensitivity analysis were also performed from a view point of the extracted elastic modulus.

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene

  • Drozdov, A.D.;Al-Mulla, A.;Gupta, R.K.
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.245-268
    • /
    • 2012
  • Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

Curing Reaction and Physical Properties of High-Solid Acrylic/Isocyanate Coatings (하이솔리드 아크릴/이소시아네이트 도료의 경화반응과 도막물성)

  • Park, Hong-Soo;Shim, Il-Woo;Jo, Hye-Jin;Kim, Seong-Kil;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.371-378
    • /
    • 2005
  • In the previous study, three kinds of monomers and the functional monomer, acetoacetoxyethyl methacrylate (AAEM), which could improve the film property and cross-linkage, were polymerzied into acrylic resin copolymers (HSA-98-20, HSA-98-0, HSA-98+20) containing 80% solid content. In this study, the high-solid coatings(HSA-98-20C, HSA-98-0C, HSA-98+20C) were prepared by the curing reaction between acrylic resins containing 80% solid content and isocyanate at room temperature. Various properties were examined for the film coated with the prepared high-solid coatings. The introduction of AAEM in the coatings enhanced the abrasion resistance and solvent resistance of coatings, which indicated the possible use of high-solid coatings for top-coating materials of automobile. The curing times measured by viscoelastic measurement were 350, 264, and 212 min for HSA-98-20C, HSA-98-0C, and HSA-98+20C, respectively. This shows that the curing times become shorter with increasing $T_g$ values.

Physicochemical Properties of Gelatin from Jellyfish Rhopilema hispidum

  • Cho, Suengmok;Ahn, Ju-Ryun;Koo, Ja-Sung;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.299-304
    • /
    • 2014
  • The objective of this study was to elucidate the physicochemical characteristics of gelatin extracted from jellyfish Rhopilema hispidum. We investigated the proximate composition, amino acids, gel strength, gelling/melting points, dynamic viscoelastic properties, and viscosity of jellyfish gelatin. Jellyfish gelatin contained 12.2% moisture, 1.5% lipid, 2.1% ash, and 84.8% protein. Glycine, hydroxyproline, proline, and alanine were the predominant amino acids. The gelatin showed a gel strength of 31.2 kPa, a gelling point of $18.0^{\circ}C$, and melting point of $22.3^{\circ}C$. The gelatin was composed of ${\alpha}_1$-chain, ${\alpha}_2$-chain, ${\beta}$-chain, and ${\gamma}$-chain. During cooling and heating process, jellyfish gelatin showed lower elastic modulus (G') and loss modulus (G") values than mammalian gelatin. Jellyfish gelatin did not show superior rheological properties to mammalian gelatin, like other fish gelatin; however, it can be used in various food and cosmetic products not requiring high gel strength.

Effect of elasticity of aqueous xanthan gum solution with 2-amino-methyl-1-propanol on chemical absorption of carbon dioxide

  • Park, Sang-Wook;Choi, Byoung-Sik;Song, Ki-Won;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Absorption rate of carbon dioxide was measured in the aqueous xanthan gum (XG) solution in the range of 0-0.15 wt% containing 2-amino-2-methyl-1-propanol (AMP) of $0-2\;kmol/m^3$ in a flat-stirred vessel with an impeller of 0.05m and agitation speed of 50rpm at $25^{\circ}C$ and 0.101 MPa. The volumetric liquid-side mass transfer coefficient ($k_La$) of $CO_2$, which was correlated with the viscosity and the elastic behavior of XG solution containing Deborah number as an empirical formula, was used to estimate the chemical absorption rate of $CO_2\;(R_A)$. $R_A$, which was estimated by mass transfer mechanism based on the film theory using the physicochemical properties and the kinetics of reaction between $CO_2$ and AMP, was compared with the measured rate. The aqueous XG solution with elastic property of non-Newtonian liquid made $R_A$ increased compared with Newtonian liquid based on the same viscosity of the solution.

Development of polypropylene-clay nanocomposite with supercritical $CO_2$ assisted twin screw extrusion

  • Hwang, Tae-Yong;Lee, Sang-Myung;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2008
  • The aim of this study is to explore the possibility of incorporating supercritical carbon dioxide ($scCO_2$) into twin screw extrusion process for the production of polypropylene-clay nanocomposite (PPCN). The $CO_2$ is used as a reversible plasticizer which is expected to rapidly transport polymeric chains into the galleries of clay layers in its supercritical condition inside the extruder barrel and to expand the gallery spacings in its sub-critical state upon emerging from die. The structure and properties of the resulting PPCNs are characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), rheometry, thermogravimetry and mechanical testing. In the processing of the PPCNs with $scCO_2$, optimum $scCO_2$ concentration and screw speed which maximized the degree of intercalation of clay layers were observed. The WAXD result reveals that the PP/PP-g-MA/clay system treated with $scCO_2$ has more exfoliated structure than that without $scCO_2$ treatment, which is supported by TEM result. $scCO_2$ processing enhanced the thermal stability of PPCN hybrids. From the measurement of linear viscoelastic property, a solid-like behavior at low frequency was observed for the PPCNs with high concentration of PP-g-MA. The use of $scCO_2$ generally increased Young's modulus and tensile strength of PPCN hybrids.