• Title/Summary/Keyword: Viscoelastic Damping

Search Result 268, Processing Time 0.026 seconds

Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation

  • M. Alimoradzadeh;S.D. Akbas
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Nonlinear vibration analysis of composite beam reinforced by carbon nanotubes resting on the nonlinear viscoelastic foundation is investigated in this study. The material properties of the composite beam is considered as a polymeric matrix by reinforced carbon nanotubes according to different distributions. With using Hamilton's principle, the governing nonlinear partial differential equations are derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained. In addition, the effects of different patterns of reinforcement, linear and nonlinear damping coefficients of the viscoelastic foundation on the nonlinear vibration responses and phase trajectory of the carbon nanotube reinforced composite beam are investigated.

Thermoelastic deformation properties of non-localized and axially moving viscoelastic Zener nanobeams

  • Ahmed E. Abouelregal;Badahi Ould Mohamed;Hamid M. Sedighi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.141-154
    • /
    • 2024
  • This study aims to develop explicit models to investigate thermo-mechanical interactions in moving nanobeams. These models aim to capture the small-scale effects that arise in continuous mechanical systems. Assumptions are made based on the Euler-Bernoulli beam concept and the fractional Zener beam-matter model. The viscoelastic material law can be formulated using the fractional Caputo derivative. The non-local Eringen model and the two-phase delayed heat transfer theory are also taken into account. By comparing the numerical results to those obtained using conventional heat transfer models, it becomes evident that non-localization, fractional derivatives and dual-phase delays influence the magnitude of thermally induced physical fields. The results validate the significant role of the damping coefficient in the system's stability, which is further dependent on the values of relaxation stiffness and fractional order.

A Method to Determine Optimum Viscoelastic Layer Thickness of Sandwich Plate for Maximum Modal Damping (샌드위치 평판의 모드 감쇠 최대화를 위한 점탄성층 두께 결정법)

  • Nam, Dae-Ho;Shin, Yun-Ho;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.690-696
    • /
    • 2006
  • Thickness of damping layer in sandwich plate needs to be optimized in order to make modal loss factor of the sandwich plate maximum. Since previous studies were interested in noise reductions over high frequency range, the modal properties were derived based on simply supported boundaries. This conventional formula is approximately applicable to other boundary conditions over high frequency range only. The purpose of this study is to propose a method to determine optimum damping layer thickness of sandwich plate for maximum modal damping in low frequency range when the boundary condition is not a simple support. The conventional RKU equation based on simply supported boundary is modified to reflect other boundary conditions and the modified RKU equation is subsequently applied to determine the optimum damping layer thickness for arbitrary conditions. In order to reflect frequency-dependent characteristics of elastic modulus of the damping layer, an iteration method is proposed in determining the modal properties. Test results on sandwich plates for optimum damping layer thickness are compared with predictions by the proposed method and conventional method.

Vibration Control Characteristics of Laminated Composite ER Beams with Electric Field Dependence (전기장에 따른 복합재 ER Beam의 진동제어 특성)

  • 김재환;강영규;최승복
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.416-421
    • /
    • 2001
  • The flexural vibration of laminated composite beams with an electro-rheological(ER) fluid has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, mu1ti-layer laminated beams. The damping radio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. Finite element method is used for the analysis of dynamic characteristics of the laminated composite beams with an ER fluid. For the validation of modeling methodology using viscoelastic theory the predicted dynamic properties are compared to the measured ones by author's previous work. They are in good agreement. This paper addresses a design strategy of laminated composite under flexural vibrations with an ER fluid.

  • PDF

Dynamic Analysis of Plates with Active Constrained Layer Damping (능동구속층 감쇠를 이용한 판의 동역학적 해석)

  • 박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.581-586
    • /
    • 2004
  • This paper presents Newtonian formulation of the dynamics of plates treated fully with Active Constrained Layer Damping (ACLD). The developed equations of the plate/ACLD system provide analytical models far predicting the dynamic of laminated plates subjected to passive and active vibration damping controls. Numerical solutions of the analytical models are presented fir simply-supported plates in order to study the performance of the plate/ACLD system for different control strategies. The developed models present invaluable means for designing and predicting the performance of the smart laminated plates that can be used in many critical engineering applications.

  • PDF

Measurement of Viscoelastic Constants from Multiple Phase MR Elastography Fitting Elastic Wave (탄성파를 적용한 다중 위상 MR Elastography로부터의 점탄성 정수의 측정)

  • Jung, Nam-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.3
    • /
    • pp.119-129
    • /
    • 2012
  • In the medical field, the hardening of tissues is one of important informations used in diagnosis or understanding progress of disease, a quantitative measuring method of hardening is important for objective diagnosis. It has been proposed MRE(Magnetic Resonance Elastography) method that measures an index of hardening, viscoelastic properties in a noninvasive. Because the S/N ratio of MRE images go down when measuring viscoelastic properties from local wavelength and local damping factor of a propagating wave in MRE method, methods using multiple phase MRE images have been examined to decrease the effect of noise. We propose a method measuring viscoelastic properties after Fitting a function for multiple phase MRE images in this research. This proposed method has a advantage to set up arbitrarily the variation rate of a space direction of viscoelastic properties or the spatial resolution of measuring values according to changing of the noise included in images, though it applies viscoelastic wave for multiple phase MRE images. We confirmed the effectiveness of a proposed method by experiment using simulation images and experiment using silicone-gel phantom.

Design for Improving the Loss Factor of Composite with Sandwich Structure (샌드위치 구조를 가지는 복합재의 손실계수 향상을 위한 설계)

  • Lee, C. M.;Jeon, G.S.;Kang, D.S.;Kim, B.J.;Kim, J.H.;Kang, M.H.;Seo, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • Underwater weapon system is required to structurally strong material, since as it is directly exposed to external shock. It should also be using the lightweight material in order to take advantage of buoyancy. Composite materials meet these requirements simultaneously. Particularly in the case of submarine, composite materials are widely used. It is important to have a high strength enough to be able to withstand external shock, but it is also important to attenuate it. In a method for the shock damping, viscoelastic damping materials are inserted between the high strength composite material as a sandwich structure. Shock attenuation can be evaluated in the loss factor. In ASTM(American Society of Testing Materials), evaluation method of the loss factor of cantilever specimens is specified. In this paper, mode tests of the cantilever are performed by the ASTM standard, in order to calculate the loss factor of the viscoelastic damping material by the specified expression. Further, for verifying of the calculated loss factor, mode test of compound beams is carried out. In addition, the characteristics of the material were analyzed the effect on the loss factor.

Experimental Validation of High Damping Printed Circuit Board With a Multi-layered Superelastic Shape Memory Alloy Stiffener (적층형 초탄성 형상기억합금 보강재 기반 고댐핑 전자기판의 실험적 성능 검증)

  • Shin, Seok-Jin;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.661-669
    • /
    • 2021
  • A mechanical stiffener has been mainly applied on a PCB to secure fatigue life of a solder joint of an electronic components in spaceborne electronics by minimizing bending displacement of the PCB. However, it causes an increase of mass and volume of the electronics. The high damping PCB implemented by multi-layered viscoelastic tapes of a previous research was effective for assuring the fatigue life of the solder joint, but it also has a limitation to decrease accommodation efficiency for the components on the PCB. In this study, we proposed high damping PCB with a multi-layered superelastic shape memory alloy stiffener for spatialminimized, light-weighted, high-integrated structure design of the electronics. To investigate the basic characteristics of the proposed PCB, a static load test, a free vibration test were performed. Then, the high damping characteristic and the design effectiveness of the PCB were validated through a random vibration test.

Seismic Response Analysis at Multi-layered Ground During Large Earthquake (대형지진시 다층지반의 지진응답해석)

  • 김용성
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.55-64
    • /
    • 2002
  • In the present study, in order to apply a cyclic viscoelastic-viscoplastic constitutive model to multi-layered ground conditions during large earthquake, the numerical simulations of the 1995 Hyogoken Nanbu Earthquake at Port Island, Kobe, Japan, were performed by the seismic response analysis. From the seismic response analysis, it was found that the acceleration calculated from the cyclic elasto-viscoplastic model and cyclic viscoelastic-viscoplastic models for clay was in close agreement with the recorded accelerations at the Port Island down-hole array, and the cyclic elastic-viscoplastic and viscoelastic-viscoplastic constitutive models showed little different behavior characteristics near clay layer. Thus, the propriety of viscoplastic model for clay was convinced. Therefore, it can be concluded that a cyclic viscoelastic-viscoplastic constitutive model can give a good description of the amplification and also it showed accurate damping characteristics of clay during large event which induces plastic deformation in large strain range.

Damping and Isolation Performance of Steel Structure (철골 구조물의 제진 및 면진성능)

  • Yun, Hyun-Do;Park, Wan-Shin;Han, Byung-Chan;Hwang, Sun-Kyoung;Lee, Giu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.221-230
    • /
    • 2004
  • In this paper, the dynamic response of a multi-story steel moment resisting frame equipped with viscoelastic dampers or lead rubber bearing type isolators subjected to seismic loads is investigated analytically. The objective of this study is to find the best location of viscoelastic dampers by the maximum stress method and maximum story drifts method from structure analysis. Also, a secondary objective of the study is to compare the member force, combined stress, and natural period of the structure retrofitted with viscoelastic dampers or lead rubber bearing type isolators to find effective vibration control method.