• 제목/요약/키워드: Virulence gene

검색결과 310건 처리시간 0.023초

Prevalence and Characterization of Typical Aeromonas salmonicida Chum Salmon Isolates in Korea

  • Kim, Yong-Seok;Yoon, Jang-Won;Han, Hyun-Ja;Suebsing, Rungkarn;Kim, Jeong-Ho
    • Fisheries and Aquatic Sciences
    • /
    • 제14권4호
    • /
    • pp.347-354
    • /
    • 2011
  • Aeromonas salmonicida is an important fish pathogen commonly associated with furunculosis in salmonids. Typical A. salmonicida strains have the surface virulence A-layer protein, a major virulence determinant encoded by the vapA gene. In this study, 880 chum salmon Oncorhynchus keta were collected from the east coast of Korea during 2006-2011, including 560 wild adults and 320 artificially hatched fry pools, and the presence of typical A. salmonicida was examined by PCR using the typical A. salmonicida-specific vapA gene primers. The results demonstrated that 34.5% of the samples (304/880 samples) were PCR positive, implying that a typical A. salmonicida infection is highly prevalent among chum salmon in Korea. Twenty typical A. salmonicida isolates were recovered based on their brown pigmentation on Trypticase Soy Agar (TSA) plates, which indicates the existence of the A-layer protein. Further biochemical analyses with the four randomly selected typical A. salmonicida isolates revealed some variations in their amino acid decarboxylation and carbohydrate fermentation activity. A phylogenetic analysis based on the entire vapA gene sequence suggested that the A. salmonicida isolates from chum salmon were clustered with those isolated from Atlantic salmon in Europe. Further study is needed to resolve such an interesting relationship in detail.

Tco1 is a Hybrid Histidine Kinase Essential for the Sexual Development and Virulence of Ustilago maydis

  • Yun, Yeo Hong;Kim, Seong Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.60-60
    • /
    • 2015
  • Hybrid histidine kinase is a part of two-component system that is required for various stress responses and pathogenesis of pathogenic fungi. In the present study, Tco1, a homologue of human pathogen Cryptococcus neoformans Tco1 encoding a hybrid histidine kinase, was identified in corn smut pathogen Ustilago maydis by bioinformatic analysis. To explore the role of Tco1 in the virulence of U. maydis, mutants in which the tco1 gene was partially deleted were constructed by allelic exchange. The U. maydis tco1 mutants did show unaltered growth rate on axenic medium but were unable to produce conjugation tubes and develop fuzzy filaments, resulting in impaired mating of compatible strains. The expression levels of prf1, pra1, and mfa1 which are involved in the pheromone pathway significantly decreased in the tco1 mutants. In inoculation tests to host, the tco1 mutants showed significantly reduced ability in the production of anthocyanin pigments and tumor development on maize leaves. Overall, the combined results indicated that Tco1 plays important roles in sexual development and virulence of U. maydis by regulating the expression of the genes involved in the pheromone pathway.

  • PDF

Virulence Factors and Stability of Coliphages Specific to Escherichia coli O157:H7 and to Various E. coli Infection

  • Kim, Eun-Jin;Chang, Hyun-Joo;Kwak, Soojin;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2060-2065
    • /
    • 2016
  • Characteristics of E. coli O157:H7-specific infection bacteriophages (O157 coliphages) and broad-host-range bacteriophages for other E. coli serotypes (broad-host coliphages) were compared. The burst sizes of the two groups ranged from 40 to 176 PFU/infected cell. Distributions of the virulence factors stx1, stx2, ehxA, and saa between the two groups were not differentiated. Broad-host-range coliphages showed lower stability at $70^{\circ}C$, in relation to O157 coliphages. However, O157 coliphages showed high acid and ethanol tolerance by reduction of only 22% and 11% phages, respectively, under pH 3 and 70% ethanol for 1 h exposure. Therefore, these results revealed that the O157 coliphages might be more stable under harsh environments, which might explain their effective infection of the acid-tolerant E. coli O157:H7.

Genome-wide Screening to Identify Responsive Regulators Involved in the Virulence of Xanthomonas oryzae pv. oryzae

  • Han, Sang-Wook;Lee, Mi-Ae;Yoo, Youngchul;Cho, Man-Ho;Lee, Sang-Won
    • The Plant Pathology Journal
    • /
    • 제35권1호
    • /
    • pp.84-89
    • /
    • 2019
  • Two-component systems (TCSs) are critical to the pathogenesis of Xanthomonas oryzae pv. oryzae (Xoo). We mutated 55 of 62 genes annotated as responsive regulators (RRs) of TCSs in the genome of Xoo strain PXO99A and identified 9 genes involved in Xoo virulence. Four (rpfG, hrpG, stoS, and detR) of the 9 genes were previously reported as key regulators of Xoo virulence and the other 5 have not been characterized. Lesion lengths on rice leaves inoculated with the mutants were shorter than those of the wild type and were significantly restored with gene complementation. The population density of the 5 mutants in planta was smaller than that of PXO99A at 14 days after inoculation, but the growth curves of the mutants in rich medium were similar to those of the wild type. These newly reported RR genes will facilitate studies on the function of TCSs and of the integrated regulation of TCSs for Xoo pathogenesis.

A Genome-Scale Co-Functional Network of Xanthomonas Genes Can Accurately Reconstruct Regulatory Circuits Controlled by Two-Component Signaling Systems

  • Kim, Hanhae;Joe, Anna;Lee, Muyoung;Yang, Sunmo;Ma, Xiaozhi;Ronald, Pamela C.;Lee, Insuk
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.166-174
    • /
    • 2019
  • Bacterial species in the genus Xanthomonas infect virtually all crop plants. Although many genes involved in Xanthomonas virulence have been identified through molecular and cellular studies, the elucidation of virulence-associated regulatory circuits is still far from complete. Functional gene networks have proven useful in generating hypotheses for genetic factors of biological processes in various species. Here, we present a genome-scale co-functional network of Xanthomonas oryze pv. oryzae (Xoo) genes, XooNet (www.inetbio.org/xoonet/), constructed by integrating heterogeneous types of genomics data derived from Xoo and other bacterial species. XooNet contains 106,000 functional links, which cover approximately 83% of the coding genome. XooNet is highly predictive for diverse biological processes in Xoo and can accurately reconstruct cellular pathways regulated by two-component signaling transduction systems (TCS). XooNet will be a useful in silico research platform for genetic dissection of virulence pathways in Xoo.

해수 및 수산물에서 분리한 Vibrio vulnificus의 병원성 유전자 및 항균제 내성 (Profiles of Virulence Genes and Antimicrobial Resistance of Vibrio vulnificus Strains Isolated from Seawater and Fisheries)

  • 박권삼;조의동;김희대
    • 한국수산과학회지
    • /
    • 제54권6호
    • /
    • pp.918-926
    • /
    • 2021
  • We isolated 28 Vibrio vulnificus strains from seawater and fisheries and investigated the positive rate of eight virulence genes. Additionally, we evaluated the susceptibility of these strains to 25 antimicrobials. The positive rates of fur, vvhA, tcp, rtxA, vcgC, viuB, vvp, and acfA were 100, 92.9, 92.9, 67.9, 64.3, 25.0, 14.3, and 7.1%, respectively. A disk diffusion susceptibility test revealed that, all the investigated strains had the highest resistance to amoxicillin and oxacillin, followed by that to streptomycin (96.4%), cefoxitin (92.9%), clindamycin (82.1%), amikacin (67.9%), vancomycin (46.4%), nalidixic acid (7.1%), penicillin G (7.1%), and ampicillin (3.6%). Moreover, they were susceptible to 10 other antimicrobials, including cefotaxime, chloramphenicol, erythromycin, gentamicin, and rifampicin. Notably, amoxicillin, oxacillin, and streptomycin had average minimum inhibitory concentrations of 132.6, 603.4, and 23.1 ㎍/mL against V. vulnificus, respectively. These observations provide new insights regarding the necessity for sanitation of commercial fisheries and can potentially, help reduce the risk posed by fisheries contaminated with bacteria resistant to antimicrobials.

금강 하구 해역의 해수에서 분리한 장염비브리오(Vibrio parahaemolyticus) 균의 특성 및 항균제 내성 (Characterization and Antimicrobial Resistance of Vibrio parahaemolyticus Strains Isolated from Seawater of Geum River Estuary Area, West Coast of Korea)

  • 이신혜;김희대;박권삼
    • 한국수산과학회지
    • /
    • 제55권6호
    • /
    • pp.850-857
    • /
    • 2022
  • Seventy-five Vibrio parahaemolyticus isolates from the surface seawater of the Geum River Estuary area, on the west coast of Korea, were analyzed for the presence of virulence genes and susceptibility to 17 different antimicrobials. All 75 isolates were examined for the presence of two virulence genes (tdh or trh) using polymerase chain reaction; Only one of the isolates possessed the tdh or trh gene. According to the results of disk diffusion susceptibility tests, all of the strains were resistant to penicillin G, 92.0% were resistant to ampicillin, 82.7% were resistant to amoxicillin, 2.7% were resistant to ciprofloxacin, 2.7% were resistant to trimethoprim, 1.3% were resistant to cephalothin, and 1.3% were resistant to erythromycin. However, all of the strains were susceptible to amikacin, cefoxitin, chloramphenicol, gentamycin, kanamycin, nalidixic acid, nitrofurantoin, rifampin, streptomycin, and tetracycline. The average minimum inhibitory concentrations for ampicillin for V. parahaemolyticus was 557.6 ㎍/mL. These results not only provide novel insight into the necessity for seawater sanitation in Geum river estuary area, but they help reduce the risk of contamination of antimicrobial-resistant bacteria.

국내 분리주인 Vibrio cholerae KNIH002로부터 독성 유전자 카세트의 클로닝 및 염기서열 분석 (Cloning and Nucleotide Sequence Analysis of the Virulence Gene Cassette from Vibrio cholerae KNIH002 Isolated in Korea)

  • 신희정;박용춘;김영창
    • 미생물학회지
    • /
    • 제35권3호
    • /
    • pp.205-210
    • /
    • 1999
  • Vibrio cholerae 는 사람에게 설사를 일으키는 병원성 세규닝며 본 연구에 이용된 V.cholerae KNIH002 는 국내의 설사질환 환자로부터 분리하였다. 콜레라 독소 검출용 프라이머를 이용하여 PCR 로 증폭한 산물을 탐침자로 이용하여 Southern hybridization을 실시한 결과 PstI 및 BglII로 이중절단된 4.5-kb 절편내에서 ctx 유전자가 존재함을 확인하였다. 따라서 염색체 DNA를 PstI 및 BglII로 절단 후 V. cholerae KNIH002 의 유전자 mini-libraries를 제조하였다. 그리고 동일 탐침자를 이용하여 colony hybridization을 실시한 결과 제조된 유전자 mini-libraries 로부터 신호를 나타내는 한 개의 클론을 선발하였다. 선발된 클로닝 지니는 플라스미드를 pCTX75 라 명명하였으며, 이 클론은 CHO 세포에 대한 세포 독력이 나타남을 확인하였다. 염기서열을 결정한 결과 클로닝된 플라스미드에는 ace 와 zot 유전자들은 각각 ATG 개시코돈과 TGA 종결코돈을 포함하여 291 bp와 1,200 bp 로 구성되어져 있었다. ace 유전자의 염기서열은 V.cholerae E7946 EI Tor Ogawa strain 이 것과 100% 일치하였다. 그러나 zot 유전자의 염기서열 및 아미노산 서열은 V. cholerae 395 Classical Ogawa strain 의 것과 각각 99% 및 98.8% 의 상동성을 보였다. 특히, V.cholerae 395 Classicale Ogawa strain 의 Zot 폴리펩타이드에서 100번, 272번, 281번째 alanine 은 V.cholerae KNIH002에서 모두 valine 으로 치환되어져 있었다.

  • PDF

오리 농장에서 분리한 Salmonella속 균에서 invA 및 spvC gene의 검출 (Detection of invA and spvC in Salmonella spp. isolated from duck farms)

  • 조재근
    • 한국동물위생학회지
    • /
    • 제33권4호
    • /
    • pp.341-344
    • /
    • 2010
  • Poultry and poultry products have been implicated as a major source of Salmonella infection in human, and infection due to Salmonella serotypes continue to be a major health problem. The presence of two virulence genes, invA and spvC, in 34 Salmonella isolates obtained from duck farms was investigated. All isolates contained the invA gene, and spvC gene was found in 20 (58.8%) of 34 Salmonella isolates : S. Typhimurium (n=8), S. Fyris (n=5), S. Enteritidis (n=3), S. Typhimurium var. copenhagen (n=1), S. Haardt (n=1) and S. Mbandaka (n=1). This study showed the presence of the spvC gene was widely distributed in between different Salmonella enterica isolates.

Identification and Characterization of the wbpO Gene Essential for Lipopolysaccharide Synthesis in Vibrio vulnificus

  • Park Na-Young;Lee Jeong-Hyun;Lee Byung-Cheol;Kim Tae-Sung;Choi Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.808-816
    • /
    • 2006
  • A wbpO gene encoding a putative UDP-N-acetylo-galactosamine dehydrogenase was identified and cloned from Vibrio vulnificus. LPS production was altered by disruption of the wbpO gene through allelic exchanges. The function of the wbpO gene in virulence assessed in vitro and in mice revealed that WbpO is important in both the pathogenesis of V. vulnificus and the biosynthesis of LPS.