• 제목/요약/키워드: Virtual test lab

검색결과 35건 처리시간 0.027초

Virtual Fatigue Analysis of a Small-sized Military Truck Considering Actual Driving Modes (실 주행조건을 고려한 군용 소형트럭의 가상 내구해석)

  • Suh, Kwon-Hee;Lim, Hyeon-Bin;Song, Bu-Geun;Ahn, Chang-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제16권4호
    • /
    • pp.120-127
    • /
    • 2008
  • A military vehicle undergoes normal to extreme driving conditions, which consequently induce the fatigue and fracture of cabin and frame. So, it is important to estimate the fatigue life of two components at an initial design stage. In this paper, Modal Superposition Method(MSM) was applied to evaluate the durability performance of a small-sized military truck. For reliable durability analysis, a Virtual Test Lab(VTL) Model was established by correlation with experimental results. These data were extracted from actual driving test, modal test, and SPMD(Suspension Parameter Measuring Device) test. This process shows that Virtual Fatigue Analysis can be a useful approach in the development of military vehicles as well as commercial vehicles.

The LVC Linkage for the Interoperability of the Battle Lab (Battle Lab에서의 상호운용성을 위한 LVC 연동방안)

  • Yun, Keun-Ho;Shim, Shin-Woo;Lee, Dong-Joon
    • Journal of the Korea Society for Simulation
    • /
    • 제21권1호
    • /
    • pp.81-88
    • /
    • 2012
  • In the M&S filed, The Battle Lab is available for acquisition, design, development tool, validation test, and training in the weapon system of development process. Recently, the Battle Lab in the military of Korea is still in an early stage, in spite of importance of battle lab construction. In the environment of network centric warfare, a practical use of the M&S which is connecting live, virtual and constructive model can be applied to all field of System Engineering process. It is necessary thar the Battle Lab is not restricted by time and space, and is possible for the technical implementation. In this paper, to guarantee the interoperability of live and virtual simulation, virtual simulators connect live simulators by using the tactical data link. To guarantee the interoperability of virtual and constructive simulation, both virtual simulators and constructive simulators use the RTI which is the standard tool of M&S. We propose the System that constructed the Air Defence Battle Lab. In case of the approach of target tracks, The Air Defence Battle Lab is the system for the engagement based on a command of an upper system in the engagement weapon system. Constructive simulators which are target track, missile, radar, and launcher simulator connect virtual simulators which are MCRC, battalion, and fire control center simulators using the RPR-FOM 1.0 that is a kind of RTI FOM. The interoperability of virtual simulators and live simulators can be guaranteed by the connection of the tactical data links which are Link-11B and ATDL-1.

Modeling the Density and Hardness of AA2024-SiC Nanocomposites

  • Jeon, A-Hyun;Kim, Hong In;Sung, Hyokyung;Reddy, N.S.
    • Journal of Powder Materials
    • /
    • 제26권4호
    • /
    • pp.275-281
    • /
    • 2019
  • An artificial neural network (ANN) model is developed for the analysis and simulation of correlation between flake powder metallurgy parameters and properties of AA2024-SiC nanocomposites. The input parameters of the model are AA 2024 matrix size, ball milling time, and weight percentage of SiC nanoparticles and the output parameters are density and hardness. The model can predict the density and hardness of the unseen test data with a correlation of 0.986 beyond the experimental data. A user interface is designed to predict properties at new instances. We have used the model to simulate the individual as well as the combined influence of parameters on the properties. Moreover, we have analyzed the calculated results from the powder metallurgical point of view. The developed model can be used as a guide for further composite development.

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제17권8호
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

The Durability Performance Evaluation of Automotive Components in the Virtual Testing Laboratory (차량 부품의 내구성 평가를 위한 가상시험실 구축)

  • Kim, Gi-Hoon;Kang, Woo-Jong;Kim, Dae-Sung;Ko, Woong-Hee;Lim, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제14권3호
    • /
    • pp.68-74
    • /
    • 2006
  • The evaluation of durability performance in Virtual Testing Laboratory(VTL) is a new concept of vehicle design, which can reduce the automotive design period and cost. In this study, the multibody dynamics model of a car is built with a reverse engineering design. Hard points and masses of components are measured by a surface scanning device and imported into CAD system. In order to simulate the non-linear dynamic behavior of force elements such as dampers and bushes, components and materials are tested with specialized test equipments. An optimized numerical model for the damping behavior is used and the hysteresis of bush rubber is considered in the simulation. Loads of components are calculated in VTL and used in the evaluation of durability performance. In order to verify simulation results, loads of components in the vehicle are measured and durability tests are performed.

Durability Analysis of a Large-sized Military Truck Using Virtual Test Lab (가상 시험 모델을 이용한 군용 대형트럭의 내구해석)

  • Suh, Kwon-Hee;Song, Bu-Geun;Lim, Hyeon-Vin;Chang, Hun-Sub;Oh, Cheol-Jo;Yoo, Woong-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제19권3호
    • /
    • pp.57-64
    • /
    • 2011
  • In general, the durability performance of a large-sized military truck has been checked through a field durability test which required many man-hours and costs. To reduce these expenses, the durability analysis using a VTL(Virtual Test Lab) at an initial design stage was introduced recently. In this paper, the VTL with a multi-post testrig template for a large-sized truck was developed to compute the load histories transferred to cabin and chassis frame. The VTL consisted of trimmed FE models of cabin, chassis frame, and deck, dynamic models of front and rear suspensions, and a 8-post testrig template. The basic characteristics of the VTL were correlated with experimental results which had been extracted from actual driving test, modal test, and static weight test. The fatigue analysis using MSM(Modal Superposition Method) was applied to evaluate the durability performance of a large-sized military truck. From a series of analytic methods, it is shown that the fatigue analysis process using the VTL could be a useful tool to estimate the fatigue lives and weak areas of a large-sized military truck.

Suggesting a Virtual Smart Test-bed to Verify Effectiveness for Ubiquitous Space (유비쿼터스 공간의 효용성 검증을 위한 가상 스마트 테스트베드 시스템의 제안)

  • Han, Soo-Yeon;Choi, Jin-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.741-746
    • /
    • 2006
  • Future space is currently getting a great deal of attention to apply ubiquitous computing technology. At the same time, various ubiquitous technology-based products are being developed with service scenarios in the views of diverse user groups predicted. Since these service models and scenarios need to be tested to verify effectiveness, it requires researchers to predict spatial shapes and service scenarios for future domestic environment that fulfills diverse future spatial requirements including ecological and user-oriented spaces, extended amenity getting maximum benefits from technology, etc. To support these developments, the need to make a physical test-bed, a real building model, is essential. However building a physical test-bed generally is economically expensive and even if the test-bed could be settled, it must be carefully designed before it is built In this paper, we suggest a virtual smart test-bed, called "V-PlaceLab", using virtual reality techniques. This system allows not only to inspect a scenario with the aid of computer simulation on a virtual environment, but also to design a virtual test-bed mentioned above.

  • PDF

Durability Analysis on the Prototype of a Korean Light Tactical Vehicle (한국형 소형전술 시제차량의 내구성능 평가)

  • Suh, Kwonhee;Yu, Myeongkwang;Lim, Mintaek;Jeong, Chanman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제21권3호
    • /
    • pp.148-156
    • /
    • 2013
  • Since the demand for new military vehicle to fulfill the necessary conditions such as multi-purpose, high-mobility, and survivability has raised continuously from the army, the prototype of a Korean light tactical vehicle was developed to meet these requirements using our own technology. In particular, the new tactical vehicle was equipped with a double wishbone independent suspension to improve ride and handling and maximize off-road driving performance. In this paper, a comprehensive virtual durability process to evaluate the service life of the prototype is presented. A reliability of the trimmed body model based on CATIA data was verified by comparison result between mode analysis and modal test. The dynamic model was constructed using ADAMS/Car, and then the weight distribution and lateral slope driving performance of it were compared with the results of static weight and lateral slope tests. The validity of the VTL(Virtual Test Lab) was checked with test results from the 3-inch spaced impact road. The durability performances of trimmed body and suspension components were evaluated through MSM(Modal Superposition Method) fatigue analysis. It is shown that the virtual durability process could be a helpful tool to find out the weak areas and improve their structures in developing new military vehicle.

Analysis of Durability of Vehicle Chassis Part in Virtual Test Lab (가상내구시험을 통한 차량 샤시 부품 내구성 예측에 관한 연구)

  • Cho, ByungKwan;Ha, Jungho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제37권6호
    • /
    • pp.747-752
    • /
    • 2013
  • Recently, virtual test laboratory techniques have been widely used to reduce vehicle development costs and time. In this study, a virtual durability test process using multibody dynamics simulation and fatigue simulation is proposed. The flexible multibody model of the front half of a car suspension is solved using road loads that are measured from durability test courses such as a Belgian road. To verify the simulation results, the measured loads of components and simulation results are collated.

LabVIEW Based Laboratory Typed Test Setup for the Determination of Induction Motor Performance Characteristics

  • Calis, Hakan;Caki, Eyup
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1928-1934
    • /
    • 2014
  • Induction motors are widely used due to their rugged, robust and easy to care features. Since they are heavily used in industry, testing of three phase induction motors have play a vital role. In order to determine motor equivalent circuit parameters, efficiency of motor, squirrel caged laboratory sized an induction motor test setup is prepared. It is suitable for the induction motor with the frame size of 100 and 112. A virtual Instrumentation typed engineering workbench (called as LabVIEW) software packet, is utilized as a graphical user interface program. Motor input power is measured by measuring the input voltage, current and power factor with the help of hall effect typed voltage and current transformers. Also, the output power is measured by measuring the speed and torque with the help of an encoder and torque sensor. All outputs of the voltage and current transformer, encoder and temperature, torque sensors are given to the Data Acquisition Card (DAQ) which acquires the data for processing and then the equivalent circuit parameters, efficiency, performance and loading characteristics are found out, using LabVIEW based user interface. It is suggested to use this test rig for the quality control of produced motors in industry, and an educational experiment setup in the school laboratories.