Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.4.275

Modeling the Density and Hardness of AA2024-SiC Nanocomposites  

Jeon, A-Hyun (Virtual Materials Lab, Department of Metallic & Materials Engineering, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Kim, Hong In (Virtual Materials Lab, Department of Metallic & Materials Engineering, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Sung, Hyokyung (Virtual Materials Lab, Department of Metallic & Materials Engineering, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Reddy, N.S. (Virtual Materials Lab, Department of Metallic & Materials Engineering, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Publication Information
Journal of Powder Materials / v.26, no.4, 2019 , pp. 275-281 More about this Journal
Abstract
An artificial neural network (ANN) model is developed for the analysis and simulation of correlation between flake powder metallurgy parameters and properties of AA2024-SiC nanocomposites. The input parameters of the model are AA 2024 matrix size, ball milling time, and weight percentage of SiC nanoparticles and the output parameters are density and hardness. The model can predict the density and hardness of the unseen test data with a correlation of 0.986 beyond the experimental data. A user interface is designed to predict properties at new instances. We have used the model to simulate the individual as well as the combined influence of parameters on the properties. Moreover, we have analyzed the calculated results from the powder metallurgical point of view. The developed model can be used as a guide for further composite development.
Keywords
AA2024-SiC nanocomposite; Prediction; Sensitvity analysis; Density; Hardness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Canakci and T. Varol: Powder Technol., 268 (2014) 72.   DOI
2 A. Hassani, E. Bagherpour and F. Qods: J. Alloys Compd., 591 (2014) 132.   DOI
3 T. Varol and A. Canakci: Met. Mater. Int., 21 (2015) 704.   DOI
4 T. Varol and A. Canakci: J. Alloys Compd., 649 (2015) 1066.   DOI
5 T. Varol, A. Canakci and S. Ozsahin: J. Alloys Compd., 739 (2018) 1005.   DOI
6 R. P. Lippmann: IEEE ASSP Magazine, 4 (1987) 4.   DOI
7 D. E. Rumelhart, G. E. Hinton and R. J. Williams: Nature, 323 (1986) 533.   DOI
8 M. H. Hassoun: Fundamentals of Artificial Neural Networks, The MIT Press, Cambridge, Massachusetts, London, England, (1995).
9 H. K. D. H. Bhadeshia: ISIJ International, 39 (1999) 966.   DOI
10 N. S. Reddy, B. B. Panigrahi, M. H. Choi, J.-H. Kim and C. S. Lee: Comput. Mater. Sci., 107 (2015) 175.   DOI
11 V. Y. Quintanilla, A. Verliefde, T.-U. Kim, A. Sadmani, M. Kennedy and G. Amy: J. Membr. Sci., 342 (2009) 251.   DOI
12 J. D. Olden, M. K. Joy and R. G. Death: Ecol. Modell., 178 (2004) 389.   DOI