• Title/Summary/Keyword: Virtual resistor

Search Result 14, Processing Time 0.021 seconds

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.

Resonance Investigation and Active Damping Method for VSC-HVDC Transmission Systems under Unbalanced Faults

  • Tang, Xin;Zhan, Ruoshui;Xi, Yanhui;Xu, Xianyong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1467-1476
    • /
    • 2019
  • Grid unbalanced faults can cause core saturation of power transformer and produce lower-order harmonics. These issues increase the electrical stress of power electronic devices and can cause a tripping of an entire HVDC system. In this paper, based on the positive-sequence and negative-sequence impedance model of a VSC-HVDC system as seen from the point of common connection (PCC), the resonance problem is analyzed and the factors determining the resonant frequency are obtained. Furthermore, to suppress over-voltage and over-current during resonance, a novel method using a virtual harmonic resistor is proposed. The virtual harmonic resistor emulates the role of a resistor connected in series with the commutating inductor without influencing the active and reactive power control. Simulation results in PSCAD/EMTDC show that the proposed control strategy can suppress resonant over-voltage and over-current. In addition, it can be seen that the proposed strategy improves the safety of the VSC-HVDC system under unbalanced faults.

Wireless Parallel Operation of a Three-phase Modular UPS Inverter using Resistive Droop Control (저항성 수하 제어를 적용한 3상 모듈형 UPS 인버터의 비통신선 방식 병렬 운전)

  • Kim, Seon-Tae;Ji, Jun-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1672-1681
    • /
    • 2016
  • This paper proposes a wireless parallel operation method of three-phase modular UPS inverter using resistive droop control. Furthermore, it applies a virtual resistor to droop control so that the output impedance of UPS inverter gets closer to resistive. It makes resistive droop control effective. The simulation using PSIM was performed in order to verify the validity of proposed algorithm. After consisting two-parallel system with three-phase modular UPS inverter, the experiment according to resistive load was conducted. It demonstrated the performance of current sharing and power sharing.

Stability Analysis of Current Control based on Virtual Resistor for Single-Phase Grid Converters with LLCL Input Filters (LLCL 입력필터를 갖는 단상 그리드 컨버터의 가상 저항에 따른 전류제어 안정도 해석)

  • Bae, Cheol-Ju;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.404-410
    • /
    • 2016
  • To avoid the stability issues of LLCL filters, passive or active damping methods to eliminate the resonance phenomena are required. In this paper, system stability of a current control is analyzed when the active damping scheme based on the virtual resister is utilized in single-phase grid converter systems with LLCL input filters. The control performance according to the parameters of the virtual resistance is investigated. The validity of stability analysis was verified by simulation and experimental results.

Method for Damping Resonant Voltages on the Output LC Filter of PWM Inveter (PWM인버터의 출력 LC필터에 의한 공진전압 억제 기법)

  • Choi G. J.;Chun T. W.;Lee H. H.;Nho E. C.;Kim H. G.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.415-419
    • /
    • 2004
  • The U filter has been generally used to filter the output voltage of PWM inverter to the sinusoidal waveform. The resonant voltage on the output voltage of PWM inverter may be generated due to LC filter. This paper proposed the algorithm to damp the resonant voltage using the virtual resistor without decreasing the efficiency by the power loss in the real resistor The method is appled to the vector controlled induction motor driven by the PWM inverter with the LC filter. The simulation results are carried out to verify the performances of the proposed algorithm.

  • PDF

A Droop Method for High Capacity Parallel Inverters Considering Accurate Real Power Sharing

  • Kim, Donghwan;Jung, Kyosun;Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • This paper presents DG based droop controlled parallel inverter systems with virtual impedance considering the unequal resistive-inductive combined line impedance condition. This causes a reactive power sharing error and dynamic performance degradation. Each of these drawbacks can be solved by adding the feedforward term of each line impedance voltage drop or injecting the virtual inductor. However, if the line impedances are high enough because of the long distance between the DG and the PCC or if the capacity of the system is large so that the output current is very large, this leads to a high virtual inductor voltage drop which causes reductions of the output voltage and power. Therefore, the line impedance voltage drops and the virtual inductor and resistor voltage drop compensation methods have been considered to solve these problems. The proposed method has been verified in comparison with the conventional droop method through PSIM simulation and low-scale experimental results.

An instrumented Glove for Grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung-Hwan;Cannon, David;Freivalds, Andris
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.141-146
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotics manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct(VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufacturing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple-degree-of-freedom force feedback telemanipulation.ck telemanipulation.

  • PDF

An instrumented glove for grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung Hwan;Cannon, David;Freivalds, Andris
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.165-176
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotic manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct (VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufactruing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple- degree-of-freedom force feedback telemanipulation.

  • PDF

One-Cycle Control Strategy with Active Damping for AC-DC Matrix Converter

  • Liu, Xiao;Zhang, Qingfan;Hou, Dianli
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.778-787
    • /
    • 2014
  • This study presents an input filter resonance mitigation method for an AC-DC matrix converter. This method combines the advantages of the one-cycle control strategy and the active damping technique. Unnecessary sensors are removed, and system cost is reduced by employing the grid-side input currents as feedback to damp out LC resonance. A model that includes the proposed method and the input filter is established with consideration of the delay caused by the actual controller. A zero-pole map is employed to analyze model stability and to investigate virtual resistor parameter design principles. Based on a double closed-loop control scheme, the one-cycle control strategy does not require any complex modulation index control. Thus, this strategy can be more easily implemented than traditional space vector-based methods. Experimental results demonstrate the veracity of theoretical analysis and the feasibility of the proposed approach.