• Title/Summary/Keyword: Virtual mode

Search Result 289, Processing Time 0.031 seconds

Collision Avoiding Navigation of Marine Vehicles Using Fuzzy Logic

  • Joh, Joong-seon;Kwon, Kyung-Yup;Lee, Sang--Min
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.100-108
    • /
    • 2002
  • A fuzzy logic for collision avoiding navigation of marine vehicles is proposed in this paper. VFF(Virtual Force Field) method, which is used widely in the field of mobile robots, is modifiel to apply to marine vehicles. The method is named MVFF (Modified Virtual Force Field) mothod. The MVFF consists of the determination of the heading angles far track-keeping mode ($\psi_{ca}$)and collision avoidance mode ($\psi_{ca}$). The operator can choose the pattern of the track-keeping mode in the proposed algorithm. The collision avoidance algorithm can handle static and/or moving obstacles. These functons are implemented using fuzzy logic. Various simulation results verify the proposed alogorithm.

A Study on the Remote Operation and the Monitoring systems for Automatic Polishing Robot (자동 연마로봇의 원격 조작 및 모니터링 시스템 개발에 관한 연구)

  • 김병수;고석조;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.122-122
    • /
    • 2000
  • Polishing work of a free-curved surface die demands simple and repetitive operations but requires a considerable amount of time for high precision. In out previous study, to reduce the polishing time and solve the problem of the shortage of skilled workers, the automatic polishing system was developed. However, in the polishing process of die, workers have to stay still in factory to monitor the polishing process for a long time in the poor environment. Therefore, this study proposes the remote operation and monitoring system of the automatic polishing robot. The developing system offer worker monitoring functions and teleoperating functions, as following: system state check, manual manipulation mode, automatic mode, manual teaching mode, automatic teaching mode, simulation by virtual manufacturing device. And automatic teaching system is developed to easily obtain a teaching data.

  • PDF

Novel Single-State PWM Technique for Common-Mode Voltage Elimination in Multilevel Inverters

  • Nguyen, Nho-Van;Quach, Hai-Thanh;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.548-558
    • /
    • 2012
  • In this paper, a novel offset-based single-state pulse width modulation (PWM) method for achieving zero common-mode voltage (CMV) and reducing switching losses in multilevel inverters is presented. The specific active switching state of the zero common-mode (ZCM) voltage that approximates the reference voltage can be deduced from the switching state sequence of the reduced CMV phase disposition PWM (CMV PD PWM) method. From the reference leg voltages for the zero common-mode voltage, an N-to-2-level transformation defines a virtual two-level inverter and the corresponding nominal leg voltage references. The commutation process of the reduced CMV PD PWM method in a multilevel inverter and its outputs can be simply followed in a nominal switching time diagram for the virtual inverter. The characteristics of the reduced CMV PD PWM and the single-state PWM for zero common-mode voltage are analyzed in detail in this paper. The theoretical analysis of the proposed PWM method is verified by experimental results.

Variable structure control system design guaranteeing continuity of control signal

  • Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.16-19
    • /
    • 1996
  • In this paper, a sliding mode control scheme that guarantees the smoothness of the control signal and the exponential error convergence is proposed for robot manipulators. The proposed method inserts a low pass filter (LPF) in front of the plant, and the virtual controller is designed for the virtual plant - the combination of the LPF and the robot manipulator. The virtual control signal contains high frequency components because of a switching function. The real control signal, however, always shows a smooth curve since it is an output of the LPF. In addition to the smoothness of the control signal is always assured, the overall system is in the sliding mode at all times, that is, its performance is always invariant under the existence of parameter uncertainties and external disturbances. The closed-loop system is shown to be globally exponentially stable.

  • PDF

Robust Optimal Controller Design with Sliding Surfaces-Multi Input Case (새로운 슬라이딩 평면을 이용한 강인한 최적 제어기 설계-다입력 계통인 경우)

  • Park, Sung-Kyu;Jin, Mi-Jung;Kwak, Gun-Pyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.745-751
    • /
    • 2000
  • In this paper, the novel sliding durfaces are proposed by defining the virtual states. These sliding surfaces have the nominal dynamics of the original system and make it possible that the sliding Mode Control(SMC) technique is used with various types of controllers. Its design is based on the augmented system which additional dynamics as many as input numbers. The reaching phase is eliminated by using the initial virtual states which make the initial sliding functions equal to zero.

  • PDF

Fast Mode Decision For Depth Video Coding Based On Depth Segmentation

  • Wang, Yequn;Peng, Zongju;Jiang, Gangyi;Yu, Mei;Shao, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1128-1139
    • /
    • 2012
  • With the development of three-dimensional display and related technologies, depth video coding becomes a new topic and attracts great attention from industries and research institutes. Because (1) the depth video is not a sequence of images for final viewing by end users but an aid for rendering, and (2) depth video is simpler than the corresponding color video, fast algorithm for depth video is necessary and possible to reduce the computational burden of the encoder. This paper proposes a fast mode decision algorithm for depth video coding based on depth segmentation. Firstly, based on depth perception, the depth video is segmented into three regions: edge, foreground and background. Then, different mode candidates are searched to decide the encoding macroblock mode. Finally, encoding time, bit rate and video quality of virtual view of the proposed algorithm are tested. Experimental results show that the proposed algorithm save encoding time ranging from 82.49% to 93.21% with negligible quality degradation of rendered virtual view image and bit rate increment.

Novel techniques for improving the interpolation functions of Euler-Bernoulli beam

  • Chekab, Alireza A.;Sani, Ahmad A.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • In this paper, the efficiency and the accuracy of classical (CE) and high order (HE) beam element are improved by introducing two novel techniques. The first proposed element (FPE) provides an alternative for (HE) by taking the mode shapes of the clamped-clamped (C-C) beam into account. The second proposed element (SPE) which could be utilized instead of (CE) and (HE) considers not only the mode shapes of the (C-C) beam but also some virtual nodes. It is numerically proven that the eigenvalue problem and the frequency response function for Euler-Bernoulli beam are obtained more accurate and efficient in contrast to the traditional ones.

Sliding Mode Control Using $H_2/H_{\infty}$ Controller ($H_2/H_{\infty}$ 제어기를 이용한 슬라이eld 모드제어)

  • Park, Seung-Kyu;Kwak, Gun-Pyong;Kim, Min-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.612-614
    • /
    • 1999
  • In this paper a novel sliding mode control is proposed by using $H_2/H_{\infty}$ controller. this technique is constructed based on the augmented system with a virtual state and make it has the dynamics of the original system and then $H_2/H_{\infty}$ controller has robust characteristics of sliding mode control for existing parameter uncertainty. The reaching phase is excluded by setting initial virtual state value appropriately.

  • PDF

The Novel Sliding Mode Controller for Discrete-time System with Multi-Input (다중입력 이산치계통에 대한 새로운 슬라이딩 모드 제어기의 설계)

  • Park, Seung-Kyu;Jin, Mi-Jung;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.906-908
    • /
    • 1999
  • In this paper, new sliding mode surfaces are proposed by defining novel virtual states. These sliding surfaces have nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have m-th higher order than those of the original system where m is the number of inputs. The reaching phase is removed by setting the initial virtual states which makes the initial switching functions equal to zero.

  • PDF

The Novel Sliding Mode Controller for Linear System with Multi-Input (다입력계통에 대한 새로운 슬라이딩 모드 제어기)

  • Park, Seung-Kyu;Ahn, Ho-Kyun;Jin, Mi-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.440-442
    • /
    • 1998
  • In this paper, new sliding mode surfaces are proposed by defining novel virtual states. These sliding surfaces have nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have m-th higher order than those of the original system where m is the number of inputs. The reaching Phase is removed by setting the initial virtual states which makes the initial switching functions equal to zero.

  • PDF