• 제목/요약/키워드: Virtual machine tool

검색결과 107건 처리시간 0.032초

CORBA를 이용한 가상기계에서의 고장진단에 관한 연구 (Fault Diagnosis in a Virtual Machine using CORBA)

  • 서정완;강무진;정순철;김성환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.109-114
    • /
    • 1997
  • As CNC machine tool is one of core elements of manufacturing system, it is much important that it remains without troubleshoots. As a virtual machine is a recent alternative using IT for optimal utilization of CNC machine tool, it is a computer model that represents a CNC machine tool. But a virtual machine is still conceptual. So, in this paper, it is proposed that a virtual machine be a realistic model in the fault diagnosis module. For this purpose, the fault diagnosis system of machine tool using CORBA and fault diagnosis expert system has been implemented. Using this system, we have expections to diagnose exactly and prompty without the restriction of time or location, to reduce MTTR(Mean Time To Repair) and finally to increase the availability of manufacturing system.

  • PDF

가상공작기계를 이용한 5축 가공 시 공작기계의 간섭현상에 관한 연구 (A Study on Interference Phenomenon of a Machine Tool when 5 Axises Working with Virtual Machine Tool)

  • 김해지;장정환;김남경
    • 한국기계가공학회지
    • /
    • 제4권2호
    • /
    • pp.16-23
    • /
    • 2005
  • This study is intended to find out the reason of interference phenomenon of a machine tool when it operates for 5-axises working. The researcher made a Virtual Machine which has same figures of the 5 axises machine tool and Virtual Manufacturing System which has both Software factors - controller and NC code data to manipulate the movement characteristics of the machine - and Hardware factors - fixtures, workpiece, tools, holders and so on. With these virtual tools, this study is designed to find out the relation between the movement and the interference or collision, and also intended to verify the simulation and work-processing. In this study, the researcher found out, in case of the vertical 5 axises type, that it has more chances to have interference between the fixture, the workpiece and the main spindle including the tool holder due to the tilting kinetics of the main spindle. In case of the horizontal 5 axises type, on the other hand, the researcher found out that it has more possibility to have the interference between the main spindle and the rotary shaft.

  • PDF

웹기반 가상시계에서의 고장진단에 관한 연구 (A Study on the Fault Diagnosis in Web-based Virtual Machine)

  • 서정완;강무진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.430-434
    • /
    • 2001
  • Virtual manufacturing system is integrated computer model that represents the precise and whole structure of manufacturing system and simulates its physical and logical behavior in operation.[1] A virtual machine is computer model that represents a CNC machine tool and one of core elements of virtual manufacturing system. In this paper, it is emphasized that a virtual machine must be web-based system for serving information to all attendants in a real machine tool without the restriction of time or location, and then in the fault diagnosis, one of important modules of a virtual machine, the methods of both using the controller signal and web-based expert system are proposed.

  • PDF

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Virtual Machine Tool

  • Jang, Dong-Young
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 추계학술대회 및 정기총회
    • /
    • pp.204-208
    • /
    • 1998
  • The fundamental issues to evaluate machine tool's performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. The designed virtual machining system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

가상기계 구현을 위한 공작기계 모니터링 (Machine monitoring for implementing a virtual machine)

  • 배완준;강무진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.311-315
    • /
    • 2000
  • In thls paper, a remote machine monitoring system for a vimal machine is proposed. The monltonng system is one of the core functmns of a vimd machne that provides a modeling and simulation environment for machining processes and management of the machine life cycle. The proposed system contains the modules for investigating tool wear using neural network and web-based real time process monitoring. An example implementation for tool wear and machining status monitoring is illustrated

  • PDF

항공기 부품의 5축 수평형 공작기계 머신 시뮬레이션 적용에 관한 연구 (A study on machine simulation application of aircraft parts in 5 axises horizontal machine)

  • 이인수;김남경;김해지;장정환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.367-372
    • /
    • 2003
  • This paper shows about the machine simulation embodiment when it happened NC equipment and between workpiece and interference collision at 5 axises processing of aircraft parts. And this research has been chosen because of the highest equipment interference occurrence rate at aircraft parts processing of 5 axises horizontal machine. It can verify simulation and machining process through correlation about their dynamic relations. interference, collision as embodied virtual manufacturing system of machining tool, workpiece, and holder etc. that is necessary element in shape of machine tool and function and processing in imagination ball. Also. it verified about interference and collision between NC equipment parts and workpiece, for applied machine simulation to NC Data of actuality aircraft parts of BULKHEAD and FRAME.

  • PDF

공작기계의 체적오차 보정과 가상가공 시스템에 관한 연구 (A study of the Volumetric Error Compensation and Virtual Machining System in a Machine Tool)

  • 양승한
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.134-139
    • /
    • 1998
  • The objective of this study is to estimate and to compensate for the volumetric error of a machine tool. In this paper, the volumetric error is defined and error synthesis model is presented. Then, the volumetric error of workpiece is compared through the virtual machining and a new tool-path is generated to compensate for the error in the post-processor of CAM system using the error synthesis model. By this method, the error is compensated without modification or replacement of a machine tool being in use.

  • PDF

웹 기반의 가상 프레스 개발 (A Development of Wet-based Virtual Press)

  • 정완진;장동영;이학림;최석우;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.121-124
    • /
    • 2002
  • This paper resents a virtual forming system to simulate deep drawing process for stress-strain information by utilizing virtual system designed using Virtual Reality Modeling Language (VRML) and computer aided analysis (CAE) tool. The CAE tool to calculate stress, strain, and deformation is designed using Finite Element Method. Stress distributions and deformation profiles as well as the operation of forming machine can be simulated and visualized in the web. The developed system consists of three modules, input module, virtual forming machine module, and output module. The input nodule was designed using HTML and ASP. The input data for FEM calculation is directed to the forming machine module for calculation. The results from the forming machine module can be visualized through output module as well as the forming process simulation.

  • PDF

Development of a Virtual Machine Tool-Part 4: Mechanistic Cutting Force Model, Machined Surface Error Model, and Feed Rate Scheduling Model

  • Yun, Won-Soo;Ko, Jeong-Hoon;Cho, Dong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권2호
    • /
    • pp.71-76
    • /
    • 2003
  • A virtual machine tool (VMT) is presented in this two-part paper. In Part 1, the analytical foundation for a virtual machining system is developed, which is envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes. The VHT system undergoes "pseudo-real machining", before actual cutting with a CNC machine tool takes place, to provide the proper cutting conditions for process planners and to compensate or control the machining process in terms of the productivity and attributes of the products. The attributes can be characterized by the machined surface error, dimensional accuracy, roughness, integrity, and so forth. The main components of the VMT are the cutting process, application, thermal behavior, and feed drive modules. In Part 1, the cutting process module is presented. When verified experimentally, the proposed models gave significantly better prediction results than any other methods. In Part 2 of this paper, the thermal behavior and feed drive modules are developed, and the models are integrated into a comprehensive software environment.vironment.