• 제목/요약/키워드: Virtual Stiffness Model

검색결과 51건 처리시간 0.026초

Design of a Hybrid Serial-Parallel Robot for Multi-Tasking Machining Processes (ICCAS 2005)

  • Kyung, Jin-Ho;Han, Hyung-Suk;Ha, Young-Ho;Chung, Gwang-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.621-625
    • /
    • 2005
  • This paper presents a new hybrid serial-parallel robot(HSPR), which has six degrees of freedom driven by ball screw linear actuators and motored joints. This hybrid robot design presents a compromise between high rigidity of fully parallel manipulators and extended workspace of serial manipulators. The hybrid robot has a large, singularity-free workspace and high stiffness. Therefore, the presented kinematic structure of the hybrid robot is particularly suitable for multi-tasking machining processes such as milling, drilling, deburring and grinding. In addition to the machining processes, the hybrid robot can be used for welding, fixturing, material handling and so on. The study on design of the hybrid robot is performed. A kinematic analysis and mechanism description of the hybrid robot with six-controlled degree of freedom is presented. In the virtual design works by DADS, workspace and force analysis are discussed. A numerical model is treated to demonstrate our analysis and to determine the range of permissible extension of the struts. Also, we determine some important design parameters for the hybrid robot.

  • PDF

높은 세장비를 가진 복합재 날개 구조의 효율적인 고기능 설계를 위한 구조해석 해석 라이브러리 개발 (Structural Analysis Library Development for Efficient High-Fidelity Composite Rotor Blade and Wing Design with High Aspect Ratio)

  • 박제홍;장준환
    • 한국군사과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.460-466
    • /
    • 2019
  • It takes a lot of time and human resources to build a detailed three-dimensional finite element analysis model that is almost similar to the actual structure for sophisticated analysis, and a lot of experience and know-how is required to form a reliable analytical model. In this paper, the one-dimensional beam model connected by stiffness matrix through blade analysis library was compared with the results of three-dimensional analysis with the stress calculated through the process of dimensional restoration analysis based on the principle of virtual work. By comparing the stress calculated through dimensional restoration analysis with the three-dimensional analytical model, We will introduce the development status and application case of the blade analysis library by comparing efficiency and accuracy.

루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법을 이용한 인간의 임피던스가 포함된 햅틱 시스템의 안정성 분석 (Stability Analysis of a Haptic System with a Human Impedance model using the Routh-Hurwitz Criterion)

  • 이경노
    • 한국산학기술학회논문지
    • /
    • 제15권4호
    • /
    • pp.1813-1818
    • /
    • 2014
  • 햅틱 시스템에는 사용자인 인간이 항상 포함되므로, 인간 임피던스에 의한 시스템 안정성 분석이 필요하다. 특히, 일차 홀드 방식의 햅틱 시스템에 대한 인간 임피던스의 안정성 영향 분석이 미진하다. 본 논문에서는 선형 2차 시스템으로 모델화된 인간의 임피던스 모델을 포함하는, 일차 홀드 방식의 햅틱 시스템에 대한 안정성을 루드-후르비쯔 (Routh-Hurwitz)안정성 판별법을 이용하여 해석했다. 가상 벽 모델인 가상 스프링 상수 ($K_w$)의 안정성 영역과 인간 임피던스의 질량 ($M_h$), 댐핑 ($B_h$),그리고 스프링 상수 ($K_h$)와의 관계를 루드-후르비쯔 안정성 판별법을 이용하여 분석한 결과, 스프링 상수 ($K_h$)가 일정할 때 가상 스프링 상수 ($K_w$)는 인간 임피던스의 질량 ($M_h$)과 댐핑 ($B_h$)의 제곱근에 비례했다. 또한 인간 임피던스의 질량 ($M_h$)또는 댐핑 ($B_h$)가 일정할 때 가상 스프링 상수 ($K_w$)는 스프링 상수 ($K_h$)의 0.48배만큼 감소했다. 이를 종합하여 $K_w{\leq}54413{\sqrt{(M_h+M_d)(B_h+B_d)}}-0.486K_h$의 모델을 제안했고, 이론 값들과 제시된 모델로부터 계산된 값을 비교한 결과 평균적인 상대오차가 0.5%로 작게 나타났다. 제시된 모델이 인간 임피던스 모델과 가상 스프링 상수와의 관계를 비교적 잘 표현하고 있다.

Vibration and Post-buckling Behavior of Laminated Composite Doubly Curved Shell Structures

  • Kundu, Chinmay Kumar;Han, Jae-Hung
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.21-42
    • /
    • 2009
  • The vibration characteristics of post-buckled laminated composite doubly curved shells are investigated. The finite element method is used for the analysis of post-buckling and free vibration of post-buckled laminated shells. The geometric non-linear finite element model includes the general non-linear terms in the strain-displacement relationships. The shell geometry used in the present formulation is derived using an orthogonal curvilinear coordinate system. Based on the principle of virtual work the non-linear finite element equations are derived. Arc-length method is implemented to capture the load-displacement equilibrium curve. The vibration characteristics of post-buckled shell are performed using tangent stiffness obtained from the converged deflection. The code is first validated and then employed to generate numerical results. Parametric studies are performed to analyze the snapping and vibration characteristics. The relationship between loads and fundamental frequencies and between loads and the corresponding displacements are determined for various parameters such as thickness ratio and shallowness.

궤간가변대차용 윤축시스템의 동역학적 해석 (Dynamic Analysis of Variable-Gauge Wheelset)

  • 이동원;배대성;한준석;장승호;나희승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.773-777
    • /
    • 2004
  • The variable-gauge wheelset drives on the variable railways. It doesn't need to replace or move the carriages to another bogie parts. This paper is for dynamic analysis of the variable-gauge wheel set. 3D-Virtual Mock-up. program was developed to verify the operating mechanism and understand dynamic characteristics for German RAFIL- V variable-gauge wheel set. When the system is going through the width-variable railway, its safety depends on the stiffness and velocity. So the numerical and contact model of this system were developed. This solution is useful to analyze dynamic characteristics for variable-gauge wheelset.

  • PDF

Dynamic behaviour of stiffened and damaged coupled shear walls

  • Meftah, S.A.;Tounsi, A.;Adda-Bedia, E.A.
    • Computers and Concrete
    • /
    • 제3권5호
    • /
    • pp.285-299
    • /
    • 2006
  • The free vibration of stiffened and damaged coupled shear walls is investigated using the mixed finite element method. The anisotropic damage model is adopted to describe the damage extent of the reinforced concrete shear wall element. The internal energy of a locally damaged shear wall element is derived. Polynomial shape functions established by Kwan are used to present the component of displacements vector on each point within the wall element. The principle of virtual work is employed to deduce the stiffness matrix of a damaged shear wall element. The stiffened system is reinforced by an additional stiffening beam at some level of the structure. This induces additional axial forces, and thus reduces the bending moments in the walls and the lateral deflection, and increases the natural frequencies. The effects of the damage extent and the stiffening beam on the free vibration characteristics of the structure are studied. The optimal location of the stiffening beam for increasing as far as possible the first natural frequency of vibration is presented.

볼 자동균형장치를 채용한 드럼세탁기의 모델링 및 동적 거동 해석 (Modeling and Dynamic Analysis of a Front Loaded Washing Machine with Ball Type Automatic Balancer)

  • 이준영;조성오;김태식;박윤서
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.119-131
    • /
    • 1997
  • Ball type automatic balancer is used to reduce the vibration caused by unbalance of rotor. In this study, A analytic modeling of a front loaded washing machine with ball type automatic balancer has been suggested theoretically and ADAMS has been used to analyze the dynamic characteristics of automatic balancer. It is found from simulation and experimental results that the automatic balancer suppress the steady state vibration of the washing machine effectively. The test results match well with the simulation results of ADAMS, thereby the dynamic model of ADAMS can be used as virtual prototype to predict the vibration characteristics which could be changed by the modification of design variable and can reduce the design cycle sharply. To maximize the balancing effect of automatic balancer, the friction between balls and race and the deviation between geometric center and rotation center of drum need to be minimized and the optimum design for the stiffness of flange shaft and the angular acceleration of drum should be achieved.

  • PDF

차원 복원해석과 가상균열닫힘 기법을 이용한 종방향 균열을 가진 세장비가 큰 보의 에너지 해방률 계산 (Computation of Energy Release Rates for Slender Beam through Recovery Analysis and Virtual Crack Closure Technique)

  • 장준환;구회민;안상호
    • 한국전산구조공학회논문집
    • /
    • 제30권1호
    • /
    • pp.31-37
    • /
    • 2017
  • 본 논문에서는 이종재질로 구성된 세장비가 큰 보의 차원축소와 복원의 효율성과 정확성을 입증하기 위하여 VABS와 3차원 유한요소해석 모델의 결과와 비교하였다. 그리고 3차원 유한요소모델과 차원축소 모델을 가상균열닫힘법을 이용하여 에너지 해방률을 계산하였다. 원형과 사각형의 단면에 초기 크랙을 가진 수치모델을 이용하여 보의 차원축소와 복원기법 및 가상균열닫힘법을 이용하여 복원해석 결과 및 에너지 해방률을 비교하여 효율성과 정확성을 입증하였다. 특히 제시된 에너지 해방률 계산 기법은 고고도 무인기의 날개, 헬리콥터 로터 블레이드, 풍력 블레이드, 틸트로터 등의 정적, 동적 모델링 및 수명평가에 활용될 수 있을 것이다.

불완전 모달 정보를 이용한 모드 분리 제어기 기반의 모델 개선법 (Model Updating Method Based on Mode Decoupling Controller with Incomplete Modal Data)

  • 하재훈;박윤식;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.963-966
    • /
    • 2005
  • Model updating method is known to the area to correct finite element models by the results of the experimental modal analysis. Most common methods in model updating depend on a parametric model of the structure. In this case, the number of parameters is normally smaller than that of modal data obtained from an experiment. In order to overcome this limitation, many researchers are trying to get modal data as many as possible to date. 1 want to name this method multiple modified-system generation method. These Methods consist of direct system modification method and feedback controller method. The direct system modification Is to add a mass or stiffness on the original structure or perturb the boundary conditions. The feedback controller method is to make the closed food system with sensor and actuator so as to get the closed loop modal data. In this paper, we need to focus on the feedback controller method because of its simplicity. Several methods related the feedback controller methods are virtual passive controller (VPC) sensitivity enhancement controller (SEC) and mode decoupling controller (MDC). Among them, we will apply MDC to the model updating problem. MDC has various advantages compared with other controllers, such as VPC and SEC. To begin with, only the target mode can be changed without changing modal property of non-target modes. In addition, it is possible to fix any modes if the number of sensors is equal to that of the system modes. Finally, the required control power to achieve desired change of target mode is always lower than those of other methods such as VPC. However, MDC can make the closed loop system unstable when using incomplete modal data. So we need to take action to avoid undesirable instability from incomplete modal data. In this paper, we address the method to design the unique and robust MDD obtained from incomplete modal data. The associated simulation will be Incorporated to demonstrate the usefulness of this method.

  • PDF

Mechanical behavior analysis of FG-CNTRC porous beams resting on Winkler and Pasternak elastic foundations: A finite element approach

  • Zakaria Belabed;Abdeldjebbar Tounsi;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Khaled Mohamed Khedher;Mohamed Abdelaziz Salem
    • Computers and Concrete
    • /
    • 제34권4호
    • /
    • pp.447-476
    • /
    • 2024
  • The current research proposes an innovative finite element model established within the context of higher-order beam theory to examine the bending and buckling behaviors of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams resting on Winkler-Pasternak elastic foundations. This two-node beam element includes four degrees of freedom per node and achieves inter-element continuity with both C1 and C0 continuities for kinematic variables. The isoparametric coordinate system is implemented to generate the elementary stiffness and geometric matrices as a way to enhance the existing model formulation. The weak variational equilibrium equations are derived from the principle of virtual work. The mechanical properties of FG-CNTRC beams are considered to vary gradually and smoothly over the beam thickness. The current investigation highlights the influence of porosity dispersions through the beam cross-section, which is frequently omitted in previous studies. For this reason, this analysis offers an enhanced comprehension of the mechanical behavior of FG-CNTRC beams under various boundary conditions. Through the comparison of the current results with those published previously, the proposed finite element model demonstrates a high rate of efficiency and accuracy. The estimated results not only refine the precision in the mechanical analysis of FG-CNTRC beams but also offer a comprehensive conceptual model for analyzing the performance of porous composite structures. Moreover, the current results are crucial in various sectors that depend on structural integrity in specific environments.