• 제목/요약/키워드: Virtual Source

검색결과 375건 처리시간 0.03초

QEMU를 이용한 Open Source Virtual Platform의 효용성 연구 (A Study on Utility of Open Source Virtual Platform using QEMU)

  • 최병준;서태원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.76-78
    • /
    • 2015
  • 시스템 자체를 에뮬레이션 하는 Virtual Platform은 임베디드 시스템 개발 프로세스 과정 중 하나인 소프트웨어 개발의 시점을 앞당길 수 있어 Time-To-Market을 줄일 수 있다. 본 논문에서는 Virtual Platform에 리눅스를 포팅하고 벤치마크 프로그램을 수행하여 성능을 측정하였다. 또한 이를 임베디드 시스템의 실제 개발단계에서 사용되는 Prototype Machine과 완성된 시제품에 각각 매칭 될 수 있는 FPGA 와 PC의 성능과 비교함으로써 Open Source Virtual Platform의 대표 주자인 QEMU의 효용성을 연구하였다. 실험 결과, 전체적인 성능은 PC가 FPGA보다 약 5.27배, FPGA가 Virtual Platform보다 5.38배, PC가 Virtual Platform보다 약 28.36배 더 좋은 성능을 보였다.

Angle-Based Virtual Source Location Representation for Spatial Audio Coding

  • Beack, Seung-Kwon;Seo, Jeong-Il;Moon, Han-Gil;Kang, Kyeong-Ok;Hahn, Min-Soo
    • ETRI Journal
    • /
    • 제28권2호
    • /
    • pp.219-222
    • /
    • 2006
  • Virtual source location information (VSLI) has been newly utilized as a spatial cue for compact representation of multichannel audio. This information is represented as the azimuth of the virtual source vector. The superiority of VSLI is confirmed by comparison of the spectral distances, average bit rates, and subjective assessment with a conventional cue.

  • PDF

능동 가상 임피던스를 이용한 이동 음원 추종 로봇의 장애물 회피 (Obstacle Avoidance of a Moving Sound Following Robot using Active Virtual Impedance)

  • 한종호;박숙희;노경욱;이동혁;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.200-210
    • /
    • 2014
  • An active virtual impedance algorithm is newly proposed to track a sound source and to avoid obstacles while a mobile robot is following the sound source. The tracking velocity of a mobile robot to the sound source is determined by virtual repulsive and attraction forces to avoid obstacles and to follow the sound source, respectively. Active virtual impedance is defined as a function of distances and relative velocities to the sound source and obstacles from the mobile robot, which is used to generate the tracking velocity of the mobile robot. Conventional virtual impedance methods have fixed coefficients for the relative distances and velocities. However, in this research the coefficients are dynamically adjusted to elaborate the obstacle avoidance performance in multiple obstacle environments. The relative distances and velocities are obtained using a microphone array consisting of three microphones in a row. The geometrical relationships of the microphones are utilized to estimate the relative position and orientation of the sound source against the mobile robot which carries the microphone array. Effectiveness of the proposed algorithm has been demonstrated by real experiments.

머리 전달 함수장 재현을 통한 광대역 입체 음향 구현 (HRTF-field reproduction for robust virtual source imaging)

  • 최정우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.997-1004
    • /
    • 2007
  • A hybrid technique that combines the advantages of binaural reproduction and sound field reproduction technique is proposed. The concept of HRTF-field, which is defined as the set of HRTFs corresponding to the various head dislocations, enables us to realize virtual source imaging over a wide area. Conventional $2{\times}2$ definition is redefined as a MIMO system composed of multiple control sources and multiple head locations, and HRTF variations corresponding to various head movement are quantified. Through the direct control of HRTF-field, reproduction error induced by head dislocation can be minimized in least-square-error sense, and consequential disturbances on the virtual source image can be reduced within a selected area. Simple lateralization examples are investigated, and the reproduction error of the proposed technique is compared to that of Higher-order Ambisonics.

  • PDF

머리 전달 함수장 재현을 통한 광대역 입체 음향 구현 (HRTF-field Reproduction for Robust Virtual Source Imaging)

  • 최정우
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.199-207
    • /
    • 2008
  • A hybrid technique that combines the advantages of binaural reproduction and sound field reproduction technique is proposed. The concept of HRTF-field, which is defined as the set of HRTFs corresponding to the various head dislocations, enables us to realize virtual source imaging over a wide area. Conventional binaural($2{\times}2$) reproduction system is redefined as a MIMO system composed of multiple control sources and multiple head locations, and HRTF variations corresponding to various head movement are quantified. Through the direct control of HRTF-field, reproduction error induced by head dislocation can be minimized in least-square-error sense, and consequential disturbances on the virtual source image can be reduced within a selected area. Simple lateralization examples are investigated, and the reproduction error of the proposed technique is compared to that of higher-order Ambisonics.

전자선에서 Virtual Source Distance의 위치 결정 (Determination of the Virtual Focus Position for Electron Beam with Air Scanning)

  • 권경태;윤화룡;박광호;김정만
    • 대한방사선치료학회지
    • /
    • 제6권1호
    • /
    • pp.89-93
    • /
    • 1994
  • Authors have measured virtual source distance of electron beam from CL/1800 medical linear accelerator, with newly designed method. Beam scanning was performed with the direction of beam axis in the air. Compared results between this study and well established in phantom measurement shows good agreement with in experimental error. And we have found that build-up cap plays very important role in air measurement because of charge build up. The method of in-air measurement of virtual source distance is very easy to set-up and generate accurate results.

  • PDF

Listener Auditory Perception Enhancement using Virtual Sound Source Design for 3D Auditory System

  • Kang, Cheol Yong;Mariappan, Vinayagam;Cho, Juphil;Lee, Seon Hee
    • International journal of advanced smart convergence
    • /
    • 제5권4호
    • /
    • pp.15-20
    • /
    • 2016
  • When a virtual sound source for 3D auditory system is reproduced by a linear loudspeaker array, listeners can perceive not only the direction of the source, but also its distance. Control over perceived distance has often been implemented via the adjustment of various acoustic parameters, such as loudness, spectrum change, and the direct-to-reverberant energy ratio; however, there is a neglected yet powerful cue to the distance of a nearby virtual sound source that can be manipulated for sources that are positioned away from the listener's median plane. This paper address the problem of generating binaural signals for moving sources in closed or in open environments. The proposed perceptual enhancement algorithm composed of three main parts is developed: propagation, reverberation and the effect of the head, torso and pinna. For propagation the effect of attenuation due to distance and molecular air-absorption is considered. Related to the interaction of sounds with the environment, especially in closed environments is reverberation. The effects of the head, torso and pinna on signals that arrive at the listener are also objectives of the consideration. The set of HRTF that have been used to simulate the virtual sound source environment for 3D auditory system. Special attention has been given to the modelling and interpolation of HRTFs for the generation of new transfer functions and definition of trajectories, definition of closed environment, etc. also be considered for their inclusion in the program to achieve realistic binaural renderings. The evaluation is implemented in MATLAB.

Common-Mode Voltage and Current Harmonic Reduction for Five-Phase VSIs with Model Predictive Current Control

  • Vu, Huu-Cong;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1477-1485
    • /
    • 2019
  • This paper proposes an effective model predictive current control (MPCC) that involves using 10 virtual voltage vectors to reduce the current harmonics and common-mode voltage (CMV) for a two-level five-phase voltage source inverter (VSI). In the proposed scheme, 10 virtual voltage vectors are included to reduce the CMV and low-order current harmonics. These virtual voltage vectors are employed as the input control set for the MPCC. Among the 10 virtual voltage vectors, two are applied throughout the whole sampling period to reduce current ripples. The two selected virtual voltage vectors are based on location information of the reference voltage vector, and their duration times are calculated using a simple algorithm. This significantly reduces the computational burden. Simulation and experimental results are provided to verify the effectiveness of the proposed scheme.

가상현실(VR) 콘텐츠에서 3D 객체의 셰이더 적용에 따른 사이버 멀미 연구 (A Study on Cyber Sickness according to Shader Application of 3D Objects in Virtual Reality Content)

  • 이수열;박선희;배종환
    • 한국멀티미디어학회논문지
    • /
    • 제24권11호
    • /
    • pp.1560-1566
    • /
    • 2021
  • Cyber Sickness, which occurs when using Virtual Reality contents, is the most serious problem in immersive Virtual Reality contents. The purpose of this study is to identify the effects and causes of graphic environmental factors on Cyber Sickness in Virtual Reality contents. To this end, cyber sickness experiments were conducted according to the light source and material settings, which are most commonly used in graphical environmental elements. Cyber Sickness measurements were based on the Simulator Sickness Question(SSQ) tool to derive an index that causes Cyber Sickness As a result of the analysis, the smaller the surface roughness, the higher the degree of Cyber Sickness, and the smaller the surface roughness, the smoother the surface of the 3D object, and many specular reflections from the light source occurred, which was confirmed to be the cause of great Cyber Sickness.

A GPU-based point kernel gamma dose rate computing code for virtual simulation in radiation-controlled area

  • Zhihui Xu;Mengkun Li;Bowen Zou;Ming Yang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1966-1973
    • /
    • 2023
  • Virtual reality technology has been widely used in the field of nuclear and radiation safety, dose rate computing in virtual environment is essential for optimizing radiation protection and planning the work in radioactive-controlled area. Because the CPU-based gamma dose rate computing takes up a large amount of time and computing power for voxelization of volumetric radioactive source, it is inefficient and limited in its applied scope. This study is to develop an efficient gamma dose rate computing code and apply into fast virtual simulation. To improve the computing efficiency of the point kernel algorithm in the reference (Li et al., 2020), we design a GPU-based computing framework for taking full advantage of computing power of virtual engine, propose a novel voxelization algorithm of volumetric radioactive source. According to the framework, we develop the GPPK(GPU-based point kernel gamma dose rate computing) code using GPU programming, to realize the fast dose rate computing in virtual world. The test results show that the GPPK code is play and plug for different scenarios of virtual simulation, has a better performance than CPU-based gamma dose rate computing code, especially on the voxelization of three-dimensional (3D) model. The accuracy of dose rates from the proposed method is in the acceptable range.