• 제목/요약/키워드: Virtual Laboratory System

검색결과 133건 처리시간 0.026초

원격교육을 위한 클라이언트/서버구조의 웹 기반 시뮬레이션 환경 : SimDraw (A Web-based Simulation Environment based on the Client/Server Architecture for Distance Education: SimDraw)

  • 서현곤;사공봉;김기형
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권11호
    • /
    • pp.1080-1091
    • /
    • 2003
  • 최근 인터넷 및 초고속네트워크의 발전과 더불어 원격교육도 활발히 이용되고 있다. 온라인 강의(교수-학습)툴에 대한 상대적으로 많은 연구와는 비교되게 가상실험 툴에 대한 연구는 미진하다고 할수 있다. 본 논문에서는 원격교육용 가상실험실로 사용될 수 있는 웹 기반 시뮬레이션 툴, SimDraw를 설계 및 구현한다. 웹 기반 시뮬레이션기술을 원격교육에 적용시키기 위해서는 다음과 같은 몇 가지 요구사항이 만족되어야 한다. 첫째, 시뮬레이션 툴의 사용자 인터페이스가 간단해서 학생들이 쉽게 사용할 수 있어야 한다. 둘째, 원격 학생들의 다양한 컴퓨터 환경에서도 일관되게 실행될 수 있을 정도로 이식성이 있어야 한다. 마지막으로 셋째, 시뮬레이션 프로그램이 충분히 가벼워서 학생들이 설치 없이 사용이 가능하거나 혹은 설치가 매우 간결하고 쉽게 이루어질 수 있어야 한다. 이러한 요구조건을 만족시키기 위해 SimDraw는 클라이언트/서버구조에 기반하고 있다. 클라이언트프로그램은 모델작성 및 애니메이션 기능만을 가지고 있으므로 자바 애플릿으로 구현이 가능하고 웹 브라우져 내에서 실행될 수 있다. 즉 설치가 전혀 필요 없다. 서버프로그램은 원격컴파일, 모델저장, 라이브러리관리, 사용자관리 등의 기능을 클라이언트 측에 제공한다. SimDraw의 기능을 평가하기 위해 RIP(Routing Information Protocol) 라우팅 프로토콜의 가상 실험을 예로 들어서 시뮬레이션 과정을 보였다.

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.

사용자 손 제스처 인식 기반 입체 영상 제어 시스템 설계 및 구현 (Design and Implementation of a Stereoscopic Image Control System based on User Hand Gesture Recognition)

  • 송복득;이승환;최홍규;김성훈
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.396-402
    • /
    • 2022
  • 영상 미디어를 위한 사용자 인터랙션은 다양한 형태로 개발되고 있으며, 특히, 인간의 제스처를 활용한 인터랙션이 활발히 연구되고 있다. 그 중에, 손 제스처 인식의 경우 3D Hand Model을 기반으로 실감 미디어 분야에서 휴먼 인터페이스로 활용되고 있다. 손 제스처 인식을 기반으로 한 인터페이스의 활용은 사용자가 미디어 매체에 보다 쉽고 편리하게 접근할 수 있도록 도와준다. 이러한 손 제스처 인식을 활용한 사용자 인터랙션은 컴퓨터 환경 제약 없이 빠르고 정확한 손 제스처 인식 기술을 적용하여 영상을 감상할 수 있어야 한다. 본 논문은 오픈 소스인 미디어 파이프 프레임워크와 머신러닝의 k-NN(K-Nearest Neighbor)을 활용하여 빠르고 정확한 사용자 손 제스처 인식 알고리즘을 제안한다. 그리고 컴퓨터 환경 제약을 최소화하기 위하여 인터넷 서비스가 가능한 웹 서비스 환경 및 가상 환경인 도커 컨테이너를 활용하여 사용자 손 제스처 인식 기반의 입체 영상 제어 시스템을 설계하고 구현한다.

초고전압 투과전자현미경의 원격제어 및 데이터 획득 시스템 (Remote Access and Data Acquisition System for High Voltage Electron Microscopy)

  • 안영헌;강지선;정현준;김형석;정형수;한혁;정종만;구중억;이상동;이지수;조금원;김윤중;염헌영
    • Applied Microscopy
    • /
    • 제36권1호
    • /
    • pp.7-16
    • /
    • 2006
  • 가속전압 1.3MV의 초고전압투과전자현미경의 원격제어 시스템을 개발하였다. 초고전압투과전자현미경의 운영을 위한 필수적인 기능, 즉 stage조정, 시편의 tilting, TV카메라 선택과 영상 저장 등을 원격 운영시스템에 그대로 적용하였다. 특히 이 시스템은 간단한 웹 접속만으로 goniometer를 완벽하고 정밀하게 제어할 수 있으며 고해상도 디지털카메라를 제어할 수 있는 특징을 가지고 있다. 일체의 현미경 제어 신호 및 교신은 글로리아드 망을 통하여 이루어지도록 하였다. 이는 HVEM원격 운영시스템을 이용하여 국내는 물론 국제적인 공동 연구를 수행할 수 있는 가상 실험실 구축을 실현할 수 있음을 시사한다.

AprilTag and Stereo Visual Inertial Odometry (A-SVIO) based Mobile Assets Localization at Indoor Construction Sites

  • Khalid, Rabia;Khan, Muhammad;Anjum, Sharjeel;Park, Junsung;Lee, Doyeop;Park, Chansik
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.344-352
    • /
    • 2022
  • Accurate indoor localization of construction workers and mobile assets is essential in safety management. Existing positioning methods based on GPS, wireless, vision, or sensor based RTLS are erroneous or expensive in large-scale indoor environments. Tightly coupled sensor fusion mitigates these limitations. This research paper proposes a state-of-the-art positioning methodology, addressing the existing limitations, by integrating Stereo Visual Inertial Odometry (SVIO) with fiducial landmarks called AprilTags. SVIO determines the relative position of the moving assets or workers from the initial starting point. This relative position is transformed to an absolute position when AprilTag placed at various entry points is decoded. The proposed solution is tested on the NVIDIA ISAAC SIM virtual environment, where the trajectory of the indoor moving forklift is estimated. The results show accurate localization of the moving asset within any indoor or underground environment. The system can be utilized in various use cases to increase productivity and improve safety at construction sites, contributing towards 1) indoor monitoring of man machinery coactivity for collision avoidance and 2) precise real-time knowledge of who is doing what and where.

  • PDF

Extrapolation of Hepatic Concentrations of Industrial Chemicals Using Pharmacokinetic Models to Predict Hepatotoxicity

  • Yamazaki, Hiroshi;Kamiya, Yusuke
    • Toxicological Research
    • /
    • 제35권4호
    • /
    • pp.295-301
    • /
    • 2019
  • In this review, we describe the absorption rates (Caco-2 cell permeability) and hepatic/plasma pharmacokinetics of 53 diverse chemicals estimated by modeling virtual oral administration in rats. To ensure that a broad range of chemical structures is present among the selected substances, the properties described by 196 chemical descriptors in a chemoinformatics tool were calculated for 50,000 randomly selected molecules in the original chemical space. To allow visualization, the resulting chemical space was projected onto a two-dimensional plane using generative topographic mapping. The calculated absorbance rates of the chemicals based on cell permeability studies were found to be inversely correlated to the no-observed-effect levels for hepatoxicity after oral administration, as obtained from the Hazard Evaluation Support System Integrated Platform in Japan (r = -0.88, p < 0.01, n = 27). The maximum plasma concentrations and the areas under the concentration-time curves (AUC) of a varied selection of chemicals were estimated using two different methods: simple one-compartment models (i.e., high-throughput toxicokinetic models) and simplified physiologically based pharmacokinetic (PBPK) modeling consisting of chemical receptor (gut), metabolizing (liver), and central (main) compartments. The results obtained from the two methods were consistent. Although the maximum concentrations and AUC values of the 53 chemicals roughly correlated in the liver and plasma, inconsistencies were apparent between empirically measured concentrations and the PBPK-modeled levels. The lowest-observed-effect levels and the virtual hepatic AUC values obtained using PBPK models were inversely correlated (r = -0.78, p < 0.05, n = 7). The present simplified PBPK models could estimate the relationships between hepatic/plasma concentrations and oral doses of general chemicals using both forward and reverse dosimetry. These methods are therefore valuable for estimating hepatotoxicity.

An instrumented Glove for Grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung-Hwan;Cannon, David;Freivalds, Andris
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.141-146
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotics manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct(VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufacturing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple-degree-of-freedom force feedback telemanipulation.ck telemanipulation.

  • PDF

트롤 어구에 대한 가상 고등어의 반응 행동 시뮬레이션 (Simulation of the virtual mackerel behavior to the trawl gear)

  • 이건호;이춘우;김영봉;;최무열
    • 수산해양기술연구
    • /
    • 제44권1호
    • /
    • pp.10-19
    • /
    • 2008
  • This paper focuses on the mackerel's visual ability and swimming capability, and aims to describe the behavior in capture and escape process by trawl. The visual sensory systems and reaction behavior based locomotory capability were analyzed and simulated. The ability of fish to see an object depends on the light intensity and the contrast and size of the object. Swimming endurance of the fish is dependent on the swimming speed and the size of the fish. Swimming speeds of the fish are simulated 3 types of the burst speed, the prolonged speed and the sustained speed according to the time they can maintain to swim. The herding and avoiding is typical reaction of the fish to the stimuli of trawl gear in the capture process. These basic behavior patterns of the virtual mackerel to the gear are simulated. This simulation will be helpful to understand the fishing processes and make high selectivity of fishing.

An instrumented glove for grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung Hwan;Cannon, David;Freivalds, Andris
    • 대한인간공학회지
    • /
    • 제15권2호
    • /
    • pp.165-176
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotic manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct (VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufactruing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple- degree-of-freedom force feedback telemanipulation.

  • PDF

Positional correction of a 3D position-sensitive virtual Frisch-grid CZT detector for gamma spectroscopy and imaging based on a theoretical assumption

  • Younghak Kim ;Kichang Shin ;Aleksey Bolotnikov;Wonho Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1718-1733
    • /
    • 2023
  • The virtual Frisch-grid method for room-temperature radiation detectors has been widely used because of its simplicity and high performance. Recently, side electrodes were separately attached to each surface of the detectors instead of covering the entire detector surface with a single electrode. The side-electrode structure enables the measurement of the three-dimensional (3D) gamma-ray interaction in the detector. The positional information of the interaction can then be utilized to precisely calibrate the response of the detector for gamma-ray spectroscopy and imaging. In this study, we developed a 3D position-sensitive 5 × 5 × 12 mm3 cadmium-zinc-telluride (CZT) detector and applied a flattening method to correct detector responses. Collimated gamma-rays incident on the surface of the detector were scanned to evaluate the positional accuracy of the detection system. Positional distributions of the radiation interactions with the detector were imaged for quantitative and qualitative evaluation. The energy spectra of various radioisotopes were measured and improved by the detector response calibration according to the calculated positional information. The energy spectra ranged from 59.5 keV (emitted by 241Am) to 1332 keV (emitted by 60Co). The best energy resolution was 1.06% at 662 keV when the CZT detector was voxelized to 20 × 20 × 10.