• Title/Summary/Keyword: Viral assembly

Search Result 38, Processing Time 0.035 seconds

The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses

  • John, Bwalya;Kook-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.28-38
    • /
    • 2023
  • Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.

Complete Genome Sequencing and Infectious cDNA Clone Construction of Soybean Mosaic Virus Isolated from Shanxi

  • Wang, Defu;Cui, Liyan;Zhang, Li;Ma, Zhennan;Niu, Yanbing
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.162-172
    • /
    • 2021
  • Soybean mosaic virus (SMV) is the predominant viral pathogen that affects the yield and quality of soybean. The natural host range for SMV is very narrow, and generally limited to Leguminosae. However, we found that SMV can naturally infect Pinellia ternata and Atractylodes macrocephala. In order to clarify the molecular mechanisms underlying the cross-family infection of SMV, we used double-stranded RNA extraction, rapid amplification of cDNA ends polymerase chain reaction and Gibson assembly techniques to carry out SMV full-length genome amplification from susceptible soybeans and constructed an infectious cDNA clone for SMV. The genome of the SMV Shanxi isolate (SMV-SX) consists of 9,587 nt and encodes a polyprotein consisting of 3,067 aa. SMV-SX and SMV-XFQ008 had the highest nucleotide and amino acid sequence identities of 97.03% and 98.50%, respectively. A phylogenetic tree indicated that SMV-SX and SMV-XFQ018 were clustered together, sharing the closest relationship. We then constructed a pSMV-SX infectious cDNA clone by Gibson assembly technology and used this clone to inoculate soybean and Ailanthus altissima; the symptoms of these hosts were similar to those caused by the virus isolated from natural infected plant tissue. This method of construction not only makes up for the time-consuming and laborious defect of traditional methods used to construct infectious cDNA clones, but also avoids the toxicity of the Potyvirus special sequence to Escherichia coli, thus providing a useful cloning strategy for the construction of infectious cDNA clones for other viruses and laying down a foundation for the further investigation of SMV cross-family infection mechanisms.

Development of A Monkey Kidney Cell Line Which Expresses Poliovirus Capsid Protein

  • Choi, Weon-Sang
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.4
    • /
    • pp.295-302
    • /
    • 1998
  • The RNA genome of poliovirus encodes a long polyprotein precursor and this polyprotein is cleaved proteolytically by viral protease to yield mature proteins. The mature proteins derived from the P1 polyprotein precursor are the component of capsids. To further delineate the process of capsid assembly and encapsidation, in a first attempt, a cell line which expresses the authentic P1 polyprotein was established. CV-1 cells were transfected with the pRCRSVS1P1 plasmid DNA which contains 5'ncr sequences, whole authentic capsid gene of poliovirus and neomycin resistance gene. These cells were treated with G418 for 3 months, and eventually G418 resistant cells were selected and formed colonies. Each colony was picked and grown in the media containing G418. DNA analysis indicated that 1 of 13 neomycin resistant cell lines (R2-18) contains whole poliovirus P1 capsid gene segment which was incorporated into the genome. Immuneprecipitation of cell lysates with sera from rabbit immunized with inactivateded Sabin type 1 particles demonstrated the constitutive expression of the poliovirus P1 capsid protein from R2-18.

  • PDF

Nanopore Metagenomics Sequencing for Rapid Diagnosis and Characterization of Lily Viruses

  • Lee, Hyo-Jeong;Cho, In-Sook;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.503-512
    • /
    • 2022
  • Lilies (Lilium spp.) are one of the most important ornamental flower crops grown in Korea. Most viral diseases in lilies are transmitted by infected bulbs, which cause serious economic losses due to reduced yields. Various diagnostic techniques and high-throughput sequencing methods have been used to detect lily viruses. According to Oxford Nanopore Technologies (ONT), MinION is a compact and portable sequencing device. In this study, three plant viruses, lily mottle, lily symptomless, and plantago asiatica mosaic virus, were detected in lily samples using the ONT platform. As a result of genome assembly of reads obtained through ONT, 100% coverage and 90.3-93.4% identity were obtained. Thus, we show that the ONT platform is a promising tool for the diagnosis and characterization of viruses that infect crops.

Identification of small molecules that inhibit the histone chaperone Asf1 and its chromatin function

  • Seol, Ja-Hwan;Song, Tae-Yang;Oh, Se Eun;Jo, Chanhee;Choi, Ahreum;Kim, Byungho;Park, Jinyoung;Hong, Suji;Song, Ilrang;Jung, Kwan Young;Yang, Jae-Hyun;Park, Hwangseo;Ahn, Jin-Hyun;Han, Jeung-Whan;Cho, Eun-Jung
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.685-690
    • /
    • 2015
  • The eukaryotic genome is packed into chromatin, which is important for the genomic integrity and gene regulation. Chromatin structures are maintained through assembly and disassembly of nucleosomes catalyzed by histone chaperones. Asf1 (anti-silencing function 1) is a highly conserved histone chaperone that mediates histone transfer on/off DNA and promotes histone H3 lysine 56 acetylation at globular core domain of histone H3. To elucidate the role of Asf1 in the modulation of chromatin structure, we screened and identified small molecules that inhibit Asf1 and H3K56 acetylation without affecting other histone modifications. These pyrimidine-2,4,6-trione derivative molecules inhibited the nucleosome assembly mediated by Asf1 in vitro, and reduced the H3K56 acetylation in HeLa cells. Furthermore, production of HSV viral particles was reduced by these compounds. As Asf1 is implicated in genome integrity, cell proliferation, and cancer, current Asf1 inhibitor molecules may offer an opportunity for the therapeutic development for treatment of diseases.

De novo genome assembly and single nucleotide variations for Soybean yellow common mosaic virus using soybean flower bud transcriptome data

  • Jo, Yeonhwa;Choi, Hoseong;Kim, Sang-Min;Lee, Bong Choon;Cho, Won Kyong
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.189-195
    • /
    • 2020
  • The soybean (Glycine max L.), also known as the soya bean, is an economically important legume species. Pathogens are always major threats for soybean cultivation. Several pathogens negatively affect soybean production. The soybean is also known as a susceptible host to many viruses. Recently, we carried out systematic analyses to identify viruses infecting soybeans using soybean transcriptome data. Our screening results showed that only few soybean transcriptomes contained virus-associated sequences. In this study, we further carried out bioinformatics analyses using a soybean flower bud transcriptome for virus identification, genome assembly, and single nucleotide variations (SNVs). We assembled the genome of Soybean yellow common mosaic virus (SYCMV) isolate China and revealed two SNVs. Phylogenetic analyses using three viral proteins suggested that SYCMV isolate China is closely related to SYCMV isolates from South Korea. Furthermore, we found that replication and mutation of SYCMV is relatively low, which might be associated with flower bud tissue. The most interesting finding was that SYCMV was not detected in the cytoplasmic male sterility (CMS) line derived from the non-CMS line that was severely infected by SYCMV. In summary, in silico analyses identified SYCMV from the soybean flower bud transcriptome, and a nearly complete genome of SYCMV was successfully assembled. Our results suggest that the low level of virus replication and mutation for SYCMV might be associated with plant tissues. Moreover, we provide the first evidence that male sterility might be used to eliminate viruses in crop plants.

Marine Metatranscriptome Profiling in the Sea Adjacent to Jeju Island, Korea, by RNA-sequencing (RNA-sequencing을 이용한 제주도 인접 바다의 메타전사체 프로파일링)

  • Hwang, Jinik;Kang, Mingyeong;Kim, Kang Eun;Jung, Seung Won;Lee, Taek-Kyun
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.625-629
    • /
    • 2020
  • The Ocean is a rich source of diverse living organisms include viruses. In this study, we examined the microbial communities in the sea adjacent to Jeju Island in two seasons by metatranscriptomics. We collected and extracted total RNA, and, using the next-generation sequencing HiSeq 2000 and de novo transcriptome assembly, we identified 652,984 and 163,759 transcripts from the March and December samples, respectively. The most abundant organisms in March were bacteria, while eukaryotes were dominant in the December sample. The bacterial communities differed between the two samples, suggesting seasonal change. To identify the viruses, we searched the transcripts against a viral reference database using MegaBLAST with the most identified being bacteriophages infecting the marine bacteria. However, we also revealed an abundance of transcripts associated with diverse herpesviruses in the two transcriptomes, indicating the presence or possible threat of infection of fish in the sea around Jeju Island. This data is valuable for the study of marine microbial communities and for identifying possible viral pathogens.

Isolation and Characterization of the Smallest Bacteriophage P4 Derivatives Packaged into P4-Size Head in Bacteriophage P2-P4 System

  • Kim, Kyoung-Jin;Song, Jae-Ho
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.530-536
    • /
    • 2006
  • Bacteriophage P4, a satellite phage of coliphage P2, is a very useful experimental tool for the study of viral capsid assembly and cos-cleavage. For an in vitro cos-cleavage reaction study of the P2-P4 system, new shortened and selectable markers containing P4 derivative plasm ids were designed as a substrate molecules. They were constructed by swapping the non-essential segment of P4 DNA for either the kanamycin resistance (kmr) gene or the ampicillin resistance (apr) gene. The size of the genomes of the resulting markers were 82% (P4 ash8 delRI:: kmr) and 79% (P4 ash8 delRI:: apr) of the wild type P4 genome. To determine the lower limit of genome size that could be packaged into the small P4-size bead, these shortened P4 plasmids were converted to phage particles with infection of the helper phage P2. The conversion of plasmid P4 derivatives to bacteriophage particles was verified by the heat stability test and the burst size determination experiment. CsCl buoyant equilibrium density gradient experiments confirmed not only the genome size of the viable phage form of shortened P4 derivatives, but also their packaging into the small P4-size head. P4 ash8 delRI:: apr turned out to be the smallest P4 genome that can be packaged into P4-sized head.

PAIVS: prediction of avian influenza virus subtype

  • Park, Hyeon-Chun;Shin, Juyoun;Cho, Sung-Min;Kang, Shinseok;Chung, Yeun-Jun;Jung, Seung-Hyun
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.5.1-5.5
    • /
    • 2020
  • Highly pathogenic avian influenza (HPAI) viruses have caused severe respiratory disease and death in poultry and human beings. Although most of the avian influenza viruses (AIVs) are of low pathogenicity and cause mild infections in birds, some subtypes including hemagglutinin H5 and H7 subtype cause HPAI. Therefore, sensitive and accurate subtyping of AIV is important to prepare and prevent for the spread of HPAI. Next-generation sequencing (NGS) can analyze the full-length sequence information of entire AIV genome at once, so this technology is becoming a more common in detecting AIVs and predicting subtypes. However, an analysis pipeline of NGS-based AIV sequencing data, including AIV subtyping, has not yet been established. Here, in order to support the pre-processing of NGS data and its interpretation, we developed a user-friendly tool, named prediction of avian influenza virus subtype (PAIVS). PAIVS has multiple functions that support the pre-processing of NGS data, reference-guided AIV subtyping, de novo assembly, variant calling and identifying the closest full-length sequences by BLAST, and provide the graphical summary to the end users.

Agroinfiltration-based Potato Virus X Replicons to Dissect the Requirements of Viral Infection

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.386-390
    • /
    • 2006
  • Extensive research of the Potato virus X(PVX) has been performed in in vitro transcription system using the bacteriophage T7 promoter. We constructed an efficient T-DNA based binary vector, pSNU1, and modified vectors carrying PVX replicons. The suitability of the construct to transiently express PVX RNA using Agrobacterium tumefaciens was tested by analysis of infectivity in plants. The expressed PVX RNA was infectous and systemically spread in three plant species including Nicotiana benthamiana, N. tabacum cv. Xanthi-nc, and Capsicum annuum cv. Chilsungcho. The PVX full length construct, pSPVXp31, was caused severe mosaic symptoms on N. benthamiana, severe necrotic lesions on C. annuum while milder symptoms and delayed mosaic symptoms were appeared on the systemic leaves on N. tabaccum. RT-PCR analysis confirmed the presence of PVX RNAs on both inoculated and systemic leaves in all three plant species tested. Our results indicated that PVX replicons were efficiently expressed PVX RNA in at least three tested species. Further investigation win be needed to elucidate the mechanism of PVX replication, translation, movement and assembly/disassembly processes.