Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.7.625

Marine Metatranscriptome Profiling in the Sea Adjacent to Jeju Island, Korea, by RNA-sequencing  

Hwang, Jinik (South Sea Environment Research Department, Korea Institute Ocean Science and Technology)
Kang, Mingyeong (South Sea Environment Research Department, Korea Institute Ocean Science and Technology)
Kim, Kang Eun (South Sea Environment Research Department, Korea Institute Ocean Science and Technology)
Jung, Seung Won (Library of Marine Samples, Korea Institute of Ocean Science & Technology)
Lee, Taek-Kyun (South Sea Environment Research Department, Korea Institute Ocean Science and Technology)
Publication Information
Journal of Life Science / v.30, no.7, 2020 , pp. 625-629 More about this Journal
Abstract
The Ocean is a rich source of diverse living organisms include viruses. In this study, we examined the microbial communities in the sea adjacent to Jeju Island in two seasons by metatranscriptomics. We collected and extracted total RNA, and, using the next-generation sequencing HiSeq 2000 and de novo transcriptome assembly, we identified 652,984 and 163,759 transcripts from the March and December samples, respectively. The most abundant organisms in March were bacteria, while eukaryotes were dominant in the December sample. The bacterial communities differed between the two samples, suggesting seasonal change. To identify the viruses, we searched the transcripts against a viral reference database using MegaBLAST with the most identified being bacteriophages infecting the marine bacteria. However, we also revealed an abundance of transcripts associated with diverse herpesviruses in the two transcriptomes, indicating the presence or possible threat of infection of fish in the sea around Jeju Island. This data is valuable for the study of marine microbial communities and for identifying possible viral pathogens.
Keywords
Metatranscriptome; NGS; microbial community; Jeju Island; viral pathogens;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sorek, R. and Cossart, P. 2010. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat. Rev. Genet. 11, 9-16.   DOI
2 Kujawinski, E. B. 2011. The impact of microbial metabolism on marine dissolved organic matter. Annu. Rev. Mar. Sci. 3, 567-599.   DOI
3 Chung, I. K., Kang, Y. H., Yarish, C., Kraemer, G. P. and Lee, J. A. 2002. Application of seaweed cultivation to the bioremediation of nutrient-rich effluent. Algae 17, 187-194.   DOI
4 Zhu, B., Clifford, D. A. and Chellam, S. 2005. Virus removal by iron coagulation-microfiltration. Water Res. 39, 5153-5161.   DOI
5 Hwang, J., Park, S. Y., Park, M., Lee, S. and Lee, T. K. 2017. Seasonal dynamics and metagenomic characterization of marine viruses in Goseong Bay, Korea. PLos One 12, e0169841.   DOI
6 Huson, D. H., Auch, A. F., Qi, J. and Schuster, S. C. 2007. MEGAN analysis of metagenomic data. Genome Res. 17, 377-386.   DOI
7 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R. and Zeng, Q. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652.   DOI
8 Wozniakowski, G. and Samorek-Salamonowicz, E. 2015. Animal herpesviruses and their zoonotic potential for crossspecies infection. Ann. Agric. Environ. Med. 22, 191-194.   DOI
9 Sehrawat, S., Kumar, D. and Rouse, B. T. 2018. Herpesviruses: Harmonious pathogens but relevant cofactors in other diseases? Front. Cell Infect. Microbiol. 8, 177.   DOI
10 Bento, M. C., Canha, R., Eira, C. B., Vingada, J., Nicolau, L., Ferreira, M., Domingo, M., Tavares, L. and Duarte, A. 2019. Herpesvirus infection in marine mammals: A retrospective molecular survey of stranded cetaceans in the Portuguese coastline. Infect. Genet. Evol. 67, 222-233.   DOI
11 Kato, C., Inoue, A. and Horikoshi, K. 1996. Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol. 14, 6-12.   DOI
12 Suttle, C. A. 2007. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801-812.   DOI
13 Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669-685.   DOI
14 Gilbert, J. A. and Dupont, C. L. 2011. Microbial metagenomics: beyond the genome. Annu. Rev. Mar. Sci. 3, 347-371.   DOI
15 Hanson, L., Dishon, A. and Kotler, M. 2011. Herpesviruses that infect fish. Viruses 3, 2160-2191.   DOI
16 Baker, B. J., Lesniewski, R. A. and Dick, G. J. 2012. Genomeenabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume. ISME J. 6, 2269-2279.   DOI
17 Segarra, A., Mauduit, F., Faury, N., Trancart, S., Degremont, L., Tourbiez, D., Haffner, P., Barbosa-Solomieu, V., Pepin, J. F. and Travers, M. A. 2014. Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1. BMC Genomics 15, 580.   DOI
18 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. and Madden, T. L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421.   DOI
19 Poretsky, R. S., Gifford, S., Rinta-Kanto, J., Vila-Costa, M. and Moran, M. A. 2009. Analyzing gene expression from marine microbial communities using environmental transcriptomics. J. Vis. Exp. 24, 1086.