• Title/Summary/Keyword: Viral Transport

Search Result 12, Processing Time 0.03 seconds

Fate and Transport of Viruses in Soil and Groundwater Environments (토양.지하수 환경에서 바이러스의 거동)

  • Park, Jeong-Ahn;Yoon, Seo-Young;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.504-515
    • /
    • 2012
  • Groundwater is widely used as drinking water supplies around the world. However, microbial contamination of groundwater is a serious environmental problem that degrades drinking water quality and poses a great threat to human health. Among the pathogenic microorganisms such as viruses, bacteria, and protozoa, viruses are not readily removed during transport through soils, having high mobility in groundwater environment due to their smaller size compared to bacteria and protozoa. Studies regarding the fate and transport of viruses in soils and aquifers are necessary to determine the vulnerability of groundwater to microbial contamination and to secure safe drinking water sources. Also, these studies provide important information to establish the regulations and policies related to public health. This review paper presented the field and laboratory studies conducted for the fate and transport of viruses in subsurface environments. Also, the paper provided the factors affecting the fate and transport of viruses, the characteristics of bacteriophages used for virus studies, and virus transport model/colloid filtration theory. Based on this review work, future researches should be performed actively to set up the viral protection zone for the protection of groundwater from viral contamination sources. Especially, the researches should be focused on the development of mathematical models to calculate the setback distance and travel time for the viral protection zone along with the accumulation of information related to the model parameters.

Chitosan and Its Derivatives for Gene Delivery

  • Lee, Knen-Yong
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.195-201
    • /
    • 2007
  • Non-viral vectors, including lipid- or polymer-based systems, have attracted much attention to date as a gene delivery vehicle, due to safety issues with viral vectors. Chitosan, a naturally existing cationic polymer, has shown great potential as a gene delivery carrier, as it has low immunogenicity and toxicity, excellent transcellular transport ability, and is relatively easy to chemically modify. This review summarizes and discusses the general features of chitosan and its applications as a delivery carrier of DNA and RNA.

Recurrent Herpes-Stomatitis Mimicking Acute Necrotizing Ulcerative Gingivitis (급성괴사성궤양성 치은염을 닮은 재발성 허피스 구내염)

  • Kim, Han-Seok;Lee, Suk-Keun;Park, Young-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.1
    • /
    • pp.89-92
    • /
    • 2011
  • Herpes simplex is caused by viruses of the herpesvirus hominus family. HSV have four categories: type 1, 2, 6, and 8. Generally HSV-1 affects the mouth. Once infected by HSV, the person's infection is permanent. Retrograde transport through adjacent neural tissue to sensory ganglia leads to a lifelong latent infection. Recently, we treated a patient with recurrent herpes-stomatitis mimicking acute necrotizing ulcerative gingivitis (ANUG). The results were satisfactorty so we report this case. 31 years old male patient showed sore throat, gingival ulceration, palpable both submandibular lymph node, and sulcular pus formation around posterior decayed teeth. This is the third time he has suffered from this symptom. Tentative diagnosis was acute necrotizing ulcerative gingivitis. Antibiotic therapy was started. But, intraoral symptom got worse in process of time. Especially ulcer of marginal gingiva got worse. Viral disease was suspected. We carried out viral cultivation. At the same time topical application of antiviral ointment (herpecid$^{(R)}$) was performed on oral ulcer unilaterally for the purpose of diagnosis and reducing pain experimentally. The next day pain was decreased dramatically on application area. Basing on the viral cultivation and clinical effect of antiviral ointment (herpecid$^{(R)}$), we have diagnosed it as a recurrent herpes-stomatitis and concluded that viral infection was major cause of disease and bacterial infection was secondary.

Tomato Yellow Leaf Curl China Virus Impairs Photosynthesis in the Infected Nicotiana benthamiana with βC1 as an Aggravating Factor

  • Farooq, Tahir;Liu, Dandan;Zhou, Xueping;Yang, Qiuying
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.521-529
    • /
    • 2019
  • Tomato yellow leaf curl China virus is a species of the widespread geminiviruses. The infection of Nicotiana benthamiana by Tomato yellow leaf curl China virus (TYLCCNV) causes a reduction in photosynthetic activity, which is part of the viral symptoms. ${\beta}C1$ is a viral factor encoded by the betasatellite DNA ($DNA{\beta}$) accompanying TYLCCNV. It is a major viral pathogenicity factor of TYLCCNV. To elucidate the effect of ${\beta}C1$ on plants' photosynthesis, we measured the relative chlorophyll (Chl) content and Chl fluorescence in TY-LCCNV-infected and ${\beta}C1$ transgenic N. benthamiana plants. The results showed that Chl content is reduced in TYLCCNV A-infected, TYLCCNV A plus $DNA{\beta}$ (TYLCCNV A + ${\beta}$)-infected and ${\beta}C1$ transgenic plants. Further, changes in Chl fluorescence parameters, such as electron transport rate, $F_v/F_m$, NPQ, and qP, revealed that photosynthetic efficiency is compromised in the aforementioned N. benthamiana plants. The presense of ${\beta}C1$ aggravated the decrease of Chl content and photosynthetic efficiency during viral infection. Additionally, the real-time quantitative PCR analysis of oxygen evolving complex genes in photosystem II, such as PsbO, PsbP, PsbQ, and PsbR, showed a significant reduction of the relative expression of these genes at the late stage of TYLCCNV A + ${\beta}$ infection and at the vegetative stage of ${\beta}C1$ transgenic N. benthamiana plants. In summary, this study revealed the pathogenicity of TYLCCNV in photosynthesis and disclosed the effect of ${\beta}C1$ in exacerbating the damage in photosynthesis efficiency by TYLCCNV infection.

Assessment of Viral Attenuation in Soil Using Probabilistic Quantitative Model (확률적 정량모델을 이용한 토양에서의 바이러스 저감 평가)

  • Park, Jeong-Ann;Kim, Jae-Hyun;Lee, In;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.544-551
    • /
    • 2011
  • The objective of this study was to analyze VIRULO model, a probabilistic quantitative model, which had been developed by US Environmental Protection Agency. The model could assess the viral attenuation capacity of soil as hydrogeologic barrier using Monte Carlo simulation. The governing equations used in the model were composed of unsaturated flow equations and viral transport equations. Among the model parameters, those related to water flow for 11 soil types were from UNDODA data, and those related to 5 virus species were from the literatures. The model compared the attenuation factor with threshold of attenuation to determine the probability of failure and presented the exceedances and Monte Carlo runs as output. The analysis indicated that among 11 USDA soil types, the viral attenuation capacity of loamy sand and sand were far lower than those of clay and silt soils. Also, there were differences in the attenuation in soil among 5 viruses with poliovirus showing the highest attenuation. The viral attenuation capacity of soil decreased sharply with increasing soil water content and increased nonlinearly with increasing soil barrier length. This study indicates that VIRULO model could be considered as a useful screening tool for viral risk assessment in subsurface environment.

Subcellular Location of Spodpotera Cell-expressed Human HepG2-type Glucose Transport Protein

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.160-164
    • /
    • 2012
  • The baculovirus/insect cell expression system is of great value for the large-scale production of normal and mutant mammalian passive glucose-transport proteins heterologously for structural and functional studies. In most mammalian cells that express HepG2, this transporter isoform is predominantly located at the cell surface. However, it had been reported that heterologous expression of other membrane proteins using the baculovirus system induced highly vacuolated cytoplasmic membranes. Therefore, how a cell responds to the synthesis of large amounts of a glycoprotein could be an interesting area for investigation. In order to examine the subcellular location of the human HepG2 transport proteins when expressed in insect cells, immunofluorescence studies were carried out. Insect cells were infected with the recombinant baculovirus AcNPVHIS-GT or with wild-type virus at a MOI of 5, or were not exposed to viral infection. A high level of fluorescence displayed in cells infected with the recombinant virus indicated that transporters are expressed abundantly and present on the surface of infected Sf21 cells. The evidence for the specificity of the immunostaining was strengthened by the negative results shown in the negative controls. Distribution of the transporter protein expressed in insect cells was further revealed by making a series of optical sections through an AcNPVHIS-GT-infected cell using a confocal microscope, which permits optical sectioning of cell sample. These sections displayed intense cytoplasmic immunofluorecence surrounding the region occupied by the enlarged nucleus, indicating that the expressed protein was present not only at the cell surface but also throughout the cytoplasmic membranous structures.

Effects of Cadmium on Glucose Transport in L6 Myocytes (L6 근육세포에서 포도당 수송능에 미치는 $CdCl_2$의 영향)

  • Kang Donghee;Khil Lee-Yong;park Kwangsik;Lee Byung-Hoon;Moon Chang-Kiu
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.75-85
    • /
    • 2005
  • This study was aimed to know the effect of cadmium chloride (CdCl₂) on glucose transport in L6 myotube and its action mechanism. CdCl₂ increased the 2-deoxy- (l-3H)-D-glucose (2-DOG) uptake 1.9 and 2.4 fold at 10 and 25 μM respectively. To investigate the stimulating-mechanism of glucose transport induced by CdCl₂, the wortmannin and PD98059 were used as PI3K (phosphatidylinositol 3-kinase) inhibitor and MAPK inhibitor respectively, which did not affect 2-DOG uptake. This fact suggests that CdCl₂ induced 2-DOG uptake may not be concerned to the insulin signalling pathway. Whereas nifedipine, a calcium channel blocker, and trifluoperazine, a calmodulin inhibitor, were found to inhibit the 2-DOG uptake stimulted by CdCl₂. In addition, we also measured the ROS (reactive oxygen species) production and GSH level in L6 myotube to investigate the correlation between the glucose uptake and ROS. CdCl₂(25 μM) increased ROS generation approximately 1.5 fold and changed the cellular GSH level, but GSSG/GSH ratio remained unchanged. CdCl₂ stimulated 2-DOG uptake and ROS generation were inhibited by N-acetylcystein. And BSO pretreatment, a potent inhibitor of γ-GCS, resulted in the dramatic decrease of 2-DOG uptake and also the increase of the sensitivity to cadmium cytotoxicity. The obtained results suggest that CdCl₂-stimulated glucose uptake might be based on the activation of HMP shunt as an antioxidant defense mechanism of the cells.

Effects of Cadmium on Glucose Transport in 3T3- L1 adipocytes (3T3-L1 지방세포주에서 포도당 수송에 미치는 $CdCl_2$의 영향)

  • Kang Donghee;Khil Lee-Yong;park Kwangsik;Lee Byung-Hoon;Moon Chang- Kiu
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2005
  • Cadmium is well known as a toxic metal and has insulin mimicking effects in rat adipose tissue. This study was undertaken to investigate the effect of CdCl₂ on glucose transport and its mechanism in 3T3 - L1 adipocytes. CdCl₂ exhibits respectively 2.2 and 2.8 fold increases in the 2-deoxyglucose uptake when exposed to 10 and 25 μM of CdCl₂ for 12 hr. To investigate the stimulating mechanism of glucose transport induced by CdCl₂. Wortmannin and PD98059 were used respectively as PI3K inhibitor and MAPK inhibitor, which did not affect 2-DOG uptake. This results suggest that induced 2-deoxy-(l-3H)-D-glucose (2-DOG) uptake by CdCl₂ may not be concerned with the insulin signalling pathway. Whereas nifedipine, a calcium channel blocker inhibited the 2- DOG uptake stimulated by CdCl₂. In addition, we also measured the increased production of Reactive oxygen substances (ROS) and glutathione (GSH) level in 3T3-L1 adipocytes to investigate correlation between the glucose uptake and increased production of ROS with H2DCFDA. CdCl₂ increased production of ROS. Induced 2-DOG uptake and increased production of ROS by CdCl₂ were decreased by N-acetylcystein (NAC). And L-buthionine sulfoximine (BSO) a potent inhibitor of γ-GCS, decreased of 2-DOG uptake. Also NAC and BSO changed the cellular GSH level, but GSH/GSSG ratio remained unchanged at 10, 25 μM of CdCl₂.

Novel respiratory infectious diseases in Korea

  • Kim, Hyun Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.4
    • /
    • pp.286-295
    • /
    • 2020
  • Respiratory infections are very common and highly contagious. Respiratory infectious diseases affect not only the person infected but also the family members and the society. As medical sciences advance, several diseases have been conquered; however, the impact of novel infectious diseases on the society is enormous. As the clinical presentation of respiratory infections is similar regardless of the pathogen, the causative agent is not distinguishable by symptoms alone. Moreover, it is difficult to develop a cure because of the various viral mutations. Various respiratory infectious diseases ranging from influenza, which threaten the health of mankind globally, to the coronavirus disease 2019, which resulted in a pandemic, exist. Contrary to human expectations that development in health care and improvement in hygiene will conquer infectious diseases, humankind's health and social systems are threatened by novel infectious diseases. Owing to the development of transport and trading activity, the rate of spread of new infectious diseases is increasing. As respiratory infections can threaten the members of the global community at any time, investigations on preventing the transmission of these diseases as well as development of effective antivirals and vaccines are of utmost importance and require a worldwide effort.

White Sport Syndrome Virus Disease of Shirmp and Diagnostic Methods

  • Zhan, Wen-Bin
    • Journal of Aquaculture
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Since 1993, the White Spot Syndrome Virus (WSSV) disease occurred in China among cultured shrimps resulting in mass mortality. Epizootiological surveys undertaken during the outbreak period of 1993-1994 indicated that all stages of Penaeus chinensis, P. japonicus and P. monodon were infected. Consequent to the transport of contaminated shrimp seedlings and seawater, the disease spread all over the farms of China. The disease was more rapidly transmitted at temperatures above $25^{\circ}C$. Challenge experiments showed the causative agent was highly virulent. White spots appeared on the carapace of both span-taneous and experimentally infected shrimps. Moribund shrimps contained turbid hemolymph, hypertrophied Iymphoid organ and a necrotic mid-gut gland. Electron microscopy showed the presence of viral particles in the gills, stomach, lymphoid organ, and epidermal tissue of the infected shrimp. The visions were slightly ovoid with an envelope and averaged 350 $\times$ 150 nm; nucleocapsids measured 375 $\times$ 157 nm. With discontinuous sucrose gradient of 35, 50 and 60% (w/v), the virus was separated from hemolymph of the infected shrimp. The estimated molecular weight of genomic DNA was 237 Kb with EcoR I, 247 Kb with Hind III and 241kb with Pst I. A total of 9 hybridoma colones secreting monoclonal antibodies (MAbs) were produced from mouse myeloma and spleen cells immunized with WSSV. The immunofluorescence assay of gill tissue showed that the MAbs reacted with diseased but not with healthy shrimp. The MAbs belonged to IgGl, IgG2b subclass and IgM class, all with kappa light Immune-electron-microscopy with colloidal gold marker showed the presence of 5 MAbs epitopes on the envelope and one on the capsid of the virus. Baculoviral mid-gut gland necrosis showed the specificity of the MAbs produced. For diagnosis 5 different methods were selected. Using Kimura primers for PCR, or MAbs for immunoblot, ELISA or FAT method, in situ hybridization was carried out to show the gene. All these methods detected WSSV in the organ samples of the diseased shrimp but not in healthy one.