• Title/Summary/Keyword: Viologen

Search Result 139, Processing Time 0.033 seconds

Self-Assembly and Electrochemical Properties of Viologen Particles (Viologen 분자의 자기조립과 전기화학적 특성)

  • Lee, Dong-Yun;Park, Sang-Hyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.452-455
    • /
    • 2004
  • In this paper, investigations of the SAMs(self-assembled monolayers) of a thiol-fuctionalized viologen derivatives, $V_8SH$ and $SH_8V_8SH$, where, V is N,N'-dialkylbipyridinium (i.e. a viologen group), have been carried out by elucidate voltammetry date. The redox reactions are highly reversible and can be cycled many times without significant side reaction, which has been known as a nano-gram order mass detector through resonant frequency change self-assembly process of the viologen has been investigated with $QCM({\Delta}F)$. The assembling process of the $V_8SH$ and $SH_8V_8SH$ monolayers can be finished completely in about 1 hour. The measured frequency shift for $V_8SH$ and $SH_8V_8SH$ were about 351 and 172 Hz, respectively. From these values, we calculated that the mass adsorbed $V_8SH$ and $SH_8V_8SH$ were about 375 and 183 ng. We believe that this mass loss is caused by the simultaneous loss of the anions present within the monolayer for charge compensation of the viologen dications and some solvent.

  • PDF

The Electrocatalytic Reduction of Molecular Oxygen with Clay Modified Electrodes (점토광물을 이용한 산소환원의 전기화학적 촉매성에 관한 연구)

  • Oh Sung-Hun;Hwang Jin-Yeon;Shim Yoon-Bo;Lee Hyomin;Yoon Jihae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The electrocatalytic reduction of O₂ was investigated with methyl viologen and methylene blue incorporated clay-modified electrodes. Clay suspensions were prepared with Na-montmorillonite, Ca-montmorillonite, and kaolinite. The methyl viologen-clay modified electrodes were made by coating clay suspensions adsorbing methyl viologen on a glassy carbon electrode. Cyclic voltammetry were performed in aqueous media to investigate the electrocatalytic property of the modified electrode in reducing O₂. A Na-montmorillonite modified electrode showed the greatest adsorption capacity for methyl viologen. The modified electrode made of Na-montmorillonite suspension of 0.87 g/10 mL and a 2.5 mM of methyl viologen solution showed the most effective electrocatalytic property, where the catalytic reduction potential was shifted by 242.6 mV toward the positive potential. The electrocatalytic ability was more significant in acidic (pH=3.7) and alkaline (pH=12.7) media than the neutral pH range (6.3∼8.3). The methyl viologen-Na-montmorillonite modified electrode had the good reproducibility and maintain the electrocatalytic property over 20 times reuse.

Comparison of Roughnesses of Polycrystalline Gold Electrode Calculated from STM Images, Oxygen Adsorption-Desorption and Adsorption of N-Docosyl-N'-methyl Viologen (STM 이미지와 산소 흡탈착 그리고 N-docosyl-N'-methyl viologen의 흡착으로부터 구한 다결정 금 전극 표면의 거칠기의 비교)

  • Lee Chi-Woo;Jang Jai-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.104-108
    • /
    • 2000
  • It is very important to know the real roughness of electrode surface in electrochemistry. But it is impossible to know absolute roughness of electrode surface for various reasons. In this work, we compared the roughnesses of polycrystalline gold electrode often used in electrochemistry calculated from the images of scanning tunneling microscopy (STM) and cyclic voltammetry with those of Au (111) and HOPG. The roughness of polycrystalline gold calculated from STM image was $1.1(\pm0.1)$, that from adsorption-desorption of oxygen was $2.4(\pm0.7)$ and that from adsorption of N-docosyl-N'-methyl viologen was $1.6(\pm0.1)$.

녹색형광단백질로 구성된 분자광다이오드의 전자전달 특성

  • Nam, Yun-Seok;Choe, Jeong-U;Lee, Won-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.149-152
    • /
    • 2000
  • In recent years, various artificial molecular photodiode have been fabricated by mimicking the electron transport function of biological photosynthesis. And now, we have been investigated the protein-organic hetero thin film photodiode using GFP as an sensitizer based on the redox potential difference of functional molecules. In this paper, shows molecular photodiode consisting of green fluorescence protein(GFP). viologen and TCNQ. The TCNQ and viologen were deposited onto ITO coated glass by LB technique. And GFP molecule was adsorption onto the viologen LB film surface by self-assembly method. Finally, The Al deposition onto GFP/viologen/TCNQ film surface was performed to make a top electrode. As a result, The MIM(metal/Insulator/Metal) structured device was constructed. The input light of 460nm wavelength was generated by the xenon lamp system, and then the photocurrent produced from the molecular device was detected through a current-voltage(I-V) measuring unit (SMU Model 236, Keithley, USA). An artificial molecular photodiode using protein(GFP)-adsorbed hetero-LB film is presented as a model system for the bioelectronic device based on the biomimesis.

  • PDF

Fabrication of Au(111) substrate and tunneling current characteristics of self-assembled Viologen molecule (Au(111) 기판 제작과 자기조립된 Viologen 분자의 tunneling current 특성)

  • Lee, Nam-Suk;Choi, Won-Suk;Qian, Dong-Jin;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.255-256
    • /
    • 2006
  • The electrical properties of viologen ($VC_8SH$) were studied in terms of the tunneling current characteristics using self-assembling techniques and ultra high vacuum scanning tunneling microscopy (UHV-STM). We fabricated the Au substrate were deposited by thermal evaporation system($420^{\circ}C$). Self-assembled monolayers (SAMs) were prepared on Au(111), which had been thermally deposited onto freshly cleaved, heated mica. The Au substrate was exposed to a 1 mM/L solution of Octanethiol in ethanol for 24 h to form a monolayer. After through rinsing the sample, it was exposed to a 0.1 mM/L solution of $VC_8SH$ in ethanol for 30 min. We measurement of the morphology on the single viologen molecule. The current-voltage (I-V) properties were measured at arbitary configured points on the surface of the sample by using a STS.

  • PDF

Electron-transfer Properties of Viologen Self-assembled MonoLayers in Different Electrolyte Solutions (전해질 변화에 따른 Viologen 자기조립박막의 전하이동 특성 연구)

  • Lee, D.Y.;Park, S.H.;Shin, H.K.;Park, J.C.;Chang, J.S.;Kwon, Y.S.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1337-1340
    • /
    • 2004
  • The self-assembled monolayers of alkane derivatives with sulfur containing head groups on gold substrates have been widely examined recently, since the binding between S atoms and Au surface is strong. The viologen has been widely investigated their well-behaved electrochemistry including electron transfer mediation, the surface-enhanced of the adsorption and the behavior of supramolecular assemblies at electrode surfaces in theses and various studies. Yiologen monolayers are formed onto QCM by self-assembly method. We studied the relationship of electron transfer from changing the anions in 0.1 M NaCl and NaClO$_4$ electrolyte solution. The EQCM measurements revealed the anions transfer during reduction and oxidation, respectively From the EQCM data, the well-defined shape peaks were nearly equal charges by cyclic voltammetry.

Synthesis, Characterization, and Electrochemical Behavior of Viologen-Functionalized Poly(Amidoamine) Dendrimers

  • Oh, Mi-Kyung;Bae, Sang-Eun;Yoon, Jung-Hyun;Roberts, Mary F.;Cha, Eun-Hee;J. Lee, Chi-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.715-720
    • /
    • 2004
  • Amineterminated, ethylenediamine core polyamidoamine starburst dendrimers of generation 2 (G2), generation 4 (G4) and generation 6 (G6) have been successfully surface-modified via an amide coupling reaction with 4-ethyl, 4'-(3-propionic) bipyridinium cation and the electrochemical behavior of the resulting dendrimers were investigated in aqueous potassium chloride electrolyte solutions. The 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide-mediated reaction resulted in 25-39% end-group functionalization. The water-soluble 4-ethyl, 4'-(3-propylamide) bipyridinium dibromide dendrimers (G2-V2+, G4-V2+ and G6-V2+) were characterized by $^1H$ NMR and UV-Vis spectroscopic methods. The cyclic voltammetric and chronoamperometric experiments were performed to determine the diffusion coefficient and the number of electrons transferred in the process of the first reduction of the viologen-functionalized dendrimers. Adsorption of viologen-functionalized dendrimers at electrode surface was evidenced in the voltammograms. Experimentally determined diffusion coefficients were in good agreement with the values expected from the Stokes-Einstein relation, while the number of electrons transferred concurred with the extent of functionalization determined by $^1H$ NMR and UV-Vis spectra.

Selection of Mediators for Bioelectrochemical Nitrate Reduction

  • Kim Seung Hwan;Song Seung Hoon;Yoo Young Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.47-51
    • /
    • 2005
  • The bioelectrochemical reduction of nitrate in the presence of various mediators including methyl viologen and azure A was studied using a 3-electrode voltammetric system. The catalytic potential for the reduction of the mediators was observed in the reactor, which for methyl viologen and azure A were -0.74 V and -0.32 V, respectively, with respect to the potential of Ag/AgCl reference electrode. This potential was then applied to a working electrode to reduce each mediator for enzymatic nitrate reduction. Nitrite, the product of the reaction, was measured to observe the enzymatic nitrate reduction in the reaction media. Methyl viologen was observed as the most efficient mediator among those tested, while azure A showed the highest electron efficiency at the intrinsic reduction potential when the mediated enzyme reactions were carried out with the freely solubilized mediator. The electron transfer of azure A with respect to time was due to the adhesion of azure A to the hydrophilic surface during the reduction. In addition, the use of the adsorbed mediator on conductive activated carbon was proposed to inhibit the change in the electron transfer rate during the reaction by maintaining a constant mediator concentration and active surface area of the electrode. Azure A showed better than nitrite formation than methyl viologen when used with activated carbon.

Simple Preparation of Diaphorase/Polysiloxane Viologen Polymer Modified Electrode for Sensing NAD and NADH

  • Song, Ji-Eun;Hong, Zhenyu;Nagarale, Rajaram Krishna;Shin, Woon-Sup
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.163-167
    • /
    • 2011
  • Nicotinamide adenine dinucleotide, $NAD^+$, and its reduced form, NADH, play important roles as coenzymes in many enzymatic reactions. Electrochemical methods for $NAD^+$ or NADH detection or generation are drawn attention because it can provide the simple and low cost platform with fairly good sensitivity. In this study, the polysiloxane viologen polymer/diaphorase/hydrophilic polyurethane (PSV/DI/HPU) modified electrodes were simply prepared and demonstrated for bio-electrocatalytic $NAD^+$ sensors. The electrodes were co-immobilized with diaphorase and polysiloxane viologen polymer as an electron mediator followed by the overcoating with HPU membrane. The mixture of the enzyme and the electron mediator was well stabilized within HPU membrane and exhibited good reversibility and stability. The sensitivity was 0.2 $nA{\cdot}{\mu}M^{-1}$ and the detection limit was 28 ${\mu}M$ with a response time of 50 s ($t_{90%}$). The capability for NADH sensor was also observed on the PSV/DI/HPU electrode.