• Title/Summary/Keyword: Video tracking

Search Result 611, Processing Time 0.021 seconds

Video Augmentation of Virtual Object by Uncalibrated 3D Reconstruction from Video Frames (비디오 영상에서의 비보정 3차원 좌표 복원을 통한 가상 객체의 비디오 합성)

  • Park Jong-Seung;Sung Mee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.4
    • /
    • pp.421-433
    • /
    • 2006
  • This paper proposes a method to insert virtual objects into a real video stream based on feature tracking and camera pose estimation from a set of single-camera video frames. To insert or modify 3D shapes to target video frames, the transformation from the 3D objects to the projection of the objects onto the video frames should be revealed. It is shown that, without a camera calibration process, the 3D reconstruction is possible using multiple images from a single camera under the fixed internal camera parameters. The proposed approach is based on the simplification of the camera matrix of intrinsic parameters and the use of projective geometry. The method is particularly useful for augmented reality applications to insert or modify models to a real video stream. The proposed method is based on a linear parameter estimation approach for the auto-calibration step and it enhances the stability and reduces the execution time. Several experimental results are presented on real-world video streams, demonstrating the usefulness of our method for the augmented reality applications.

  • PDF

Model-based Body Motion Tracking of a Walking Human (모델 기반의 보행자 신체 추적 기법)

  • Lee, Woo-Ram;Ko, Han-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.75-83
    • /
    • 2007
  • A model based approach of tracking the limbs of a walking human subject is proposed in this paper. The tracking process begins by building a data base composed of conditional probabilities of motions between the limbs of a walking subject. With a suitable amount of video footage from various human subjects included in the database, a probabilistic model characterizing the relationships between motions of limbs is developed. The motion tracking of a test subject begins with identifying and tracking limbs from the surveillance video image using the edge and silhouette detection methods. When occlusion occurs in any of the limbs being tracked, the approach uses the probabilistic motion model in conjunction with the minimum cost based edge and silhouette tracking model to determine the motion of the limb occluded in the image. The method has shown promising results of tracking occluded limbs in the validation tests.

VTG based Moving Target Tracking Performance Improvement Method using MITL System in a Maritime Environment (해상환경에서 MITL 시스템을 활용한 VTG 기반 기동표적 추적성능 개선 기법)

  • Baek, Inhye;Woo, S.H. Arman
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.357-365
    • /
    • 2019
  • In this paper, we suggest the tracking method of moving multi-objects in maritime environments. The image acquisition is conducted using IR(InfraRed) camera sensors on an airborne platform. Under the circumstance of maritime, the qualities of IR images can be significantly degraded due to the clutter influence, which directly gives rise to a tracking loss problem. In order to reduce the effects from the clutters, we introduce a technical approach under Man-In-The-Loop(MITL) system for enhancing the tracking performance. To demonstrate the robustness of the proposed approach based on VTG(Valid Tracking Gate), the simulations are conducted utilizing the airborne IR video sequences: Then, the tracking performances are compared with the existing Kalman Filter tracking techniques.

Tracking and Interpretation of Moving Object in MPEG-2 Compressed Domain (MPEG-2 압축 영역에서 움직이는 객체의 추적 및 해석)

  • Mun, Su-Jeong;Ryu, Woon-Young;Kim, Joon-Cheol;Lee, Joon-Hoan
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.27-34
    • /
    • 2004
  • This paper proposes a method to trace and interpret a moving object based on the information which can be directly obtained from MPEG-2 compressed video stream without decoding process. In the proposed method, the motion flow is constructed from the motion vectors included in compressed video. We calculate the amount of pan, tilt, and zoom associated with camera operations using generalized Hough transform. The local object motion can be extracted from the motion flow after the compensation with the parameters related to the global camera motion. Initially, a moving object to be traced is designated by user via bounding box. After then automatic tracking Is performed based on the accumulated motion flows according to the area contributions. Also, in order to reduce the cumulative tracking error, the object area is reshaped in the first I-frame of a GOP by matching the DCT coefficients. The proposed method can improve the computation speed because the information can be directly obtained from the MPEG-2 compressed video, but the object boundary is limited by macro-blocks rather than pixels. Also, the proposed method is proper for approximate object tracking rather than accurate tracing of an object because of limited information available in the compressed video data.

MUVIS: Multi-Source Video Streaming Service over WLANs

  • Li Danjue;Chuah Chen-Nee;Cheung Gene;Yoo S. J. Ben
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.144-156
    • /
    • 2005
  • Video streaming over wireless networks is challenging due to node mobility and high channel error rate. In this paper, we propose a multi-source video streaming (MUVIS) system to support high quality video streaming service over IEEE 802.1l-based wireless networks. We begin by collocating a streaming proxy with the wireless access point to help leverage both the media server and peers in the WLAN. By tracking the peer mobility patterns and performing content discovery among peers, we construct a multi-source sender group and stream video using a rate-distortion optimized scheme. We formulate such a multi-source streaming scenario as a combinatorial packet scheduling problem and introduce the concept of asynchronous clocks to decouple the problem into three steps. First, we decide the membership of the multisource sender group based on the mobility pattern tracking, available video content in each peer and the bandwidth each peer allocates to the multi-source streaming service. Then, we select one sender from the sender group in each optimization instance using asynchronous clocks. Finally, we apply the point-to-point rate-distortion optimization framework between the selected sender-receiver pair. In addition, we implement two different caching strategies, simple caching simple fetching (SCSF) and distortion minimized smart caching (DMSC), in the proxy to investigate the effect of caching on the streaming performance. To design more realistic simulation models, we use the empirical results from corporate wireless networks to generate node mobility. Simulation results show that our proposed multi-source streaming scheme has better performance than the traditional server-only streaming scheme and that proxy-based caching can potentially improve video streaming performance.

Object Tracking & PTZ camera Control for Intelligent Surveillance System (지능형 감시 시스템을 위한 객체 추적 및 PTZ 카메라 제어)

  • Park, Ho-Sik;Hwang, Suen-Ki;Nam, Kee-Hwan;Bae, Cheol-Soo;Lee, Jin-Ki;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Smart surveillance, is the use of automatic video analysis technologies in video surveillance applications. We present a robust object tracking method using pan-tilt-zoom camera for intelligent surveillance System, As the result of the experiment using 78 vehicle, the success rate of the tracking for moving object & non-moving object werw 97.4% and 91%. and 84.6%. the success rate o PTZ control for license plate image.

Deep Learning Object Detection to Clearly Differentiate Between Pedestrians and Motorcycles in Tunnel Environment Using YOLOv3 and Kernelized Correlation Filters

  • Mun, Sungchul;Nguyen, Manh Dung;Kweon, Seokkyu;Bae, Young Hoon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.7
    • /
    • pp.1266-1275
    • /
    • 2019
  • With increasing criminal rates and number of CCTVs, much attention has been paid to intelligent surveillance system on the horizon. Object detection and tracking algorithms have been developed to reduce false alarms and accurately help security agents immediately response to undesirable changes in video clips such as crimes and accidents. Many studies have proposed a variety of algorithms to improve accuracy of detecting and tracking objects outside tunnels. The proposed methods might not work well in a tunnel because of low illuminance significantly susceptible to tail and warning lights of driving vehicles. The detection performance has rarely been tested against the tunnel environment. This study investigated a feasibility of object detection and tracking in an actual tunnel environment by utilizing YOLOv3 and Kernelized Correlation Filter. We tested 40 actual video clips to differentiate pedestrians and motorcycles to evaluate the performance of our algorithm. The experimental results showed significant difference in detection between pedestrians and motorcycles without false positive rates. Our findings are expected to provide a stepping stone of developing efficient detection algorithms suitable for tunnel environment and encouraging other researchers to glean reliable tracking data for smarter and safer City.

Shadow Removal Based on Chromaticity and Entropy for Efficient Moving Object Tracking (효과적인 이동물체 추적을 위한 색도 영상과 엔트로피 기반의 그림자 제거)

  • Park, Ki-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.387-392
    • /
    • 2014
  • Recently, various research for intelligent video surveillance system have been proposed, but the existing monitoring systems are inefficient because all of situational awareness is judged by the human. In this paper, shadow removal based moving object tracking method is proposed using the chromaticity and entropy image. The background subtraction model, effective in the context awareness environment, has been applied for moving object detection. After detecting the region of moving object, the shadow candidate region has been estimated and removed by RGB based chromaticity and minimum cross entropy images. For the validity of the proposed method, the highway video is used to experiment. Some experiments are conducted so as to verify the proposed method, and as a result, shadow removal and moving object tracking are well performed.

Graph-based Moving Object Detection and Tracking in an H.264/SVC bitstream domain for Video Surveillance (감시 비디오를 위한 H.264/SVC 비트스트림 영역에서의 그래프 기반 움직임 객체 검출 및 추적)

  • Sabirin, Houari;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.298-301
    • /
    • 2012
  • This paper presents a graph-based method of detecting and tracking moving objects in H.264/SVC bitstreams for video surveillance applications that makes use the information from spatial base and enhancement layers of the bitstreams. In the base layer, segmentation of real moving objects are first performed using a spatio-temporal graph by removing false detected objects via graph pruning and graph projection, followed by graph matching to precisely identify the real moving objects over time even under occlusion. For the accurate detection and reliable tracking of moving objects in the enhancement layer, as well as saving computational complexity, the identified block groups of the real moving objects in the base layer are then mapped to the enhancement layer to provide accurate and efficient object detection and tracking in the bitstreams of higher resolution. Experimental results show the proposed method can produce reliable results with low computational complexity in both spatial layers of H.264/SVC test bitstreams.

  • PDF

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.