• Title/Summary/Keyword: Video Projection

Search Result 154, Processing Time 0.022 seconds

A Spatially Adaptive Post-processing Filter to Remove Blocking Artifacts of H.264 Video Coding Standard (H.264 동영상 표준 부호화 방식의 블록화 현상 제거를 위한 적응적 후처리 기법)

  • Choi, Kwon-Yul;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.583-590
    • /
    • 2008
  • In this paper, we present a spatially adaptive post-processing algorithm for H.264 video coding standard to remove blocking artifacts. The loop filter of H.264 increases computational complexity of the encoder. Furthermore it doesn't clearly remove the blocking artifacts, resulting in over-blurring. For overcoming them, we combine the projection method with the Constraint Least Squares(CLS) method to restore the high quality image. To reflect the Human Visual System, we adopt the weight norm CLS method. Particularly pixel location-based local variance and laplacian operator are newly defined for the CLS method. In addition, the fact that correlation among adjoining pixels is high is utilized to constrain the solution space when the projection method is applied. Quantization Index(QP) of H.264 is also used to control the degree of smoothness. The simulation results show that the proposed post-processing filter works better than the loop filter of H.264 and converges more quickly than the CLS method.

Point Cloud Content in Form of Interactive Holograms (포인트 클라우드 형태의 인터랙티브 홀로그램 콘텐츠)

  • Kim, Dong-Hyun;Kim, Sang-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.9
    • /
    • pp.40-47
    • /
    • 2012
  • Existing art, media art, accompanied by a new path of awareness and perception instrumentalized by the human body, creating a new way to watch the interaction is proposed. Western art way to create visual images of the point cloud that represented a form that is similar to the Pointage. This traditional painting techniques using digital technology means reconfiguration. In this paper, a new appreciation of fusion of aesthetic elements and digital technology, making the point cloud in the form of video. And this holographic film projection of the spectator, and gestures to interact with the video content is presented. A Process of making contents is intent planning, content creation, content production point cloud in the form of image, 3D gestures for interaction design process, go through the process of holographic film projection. Visual and experiential content of memory recall process takes place in the consciousness of the people expressed. Complete the process of memory recall, uncertain memories, memories materialized, recalled. Uncertain remember the vague shapes of the point cloud in the form of an image represented by the image. As embodied memories through the act of interaction to manipulate images recall is complete.

Reduced-Reference Quality Assessment for Compressed Videos Based on the Similarity Measure of Edge Projections (에지 투영의 유사도를 이용한 압축된 영상에 대한 Reduced-Reference 화질 평가)

  • Kim, Dong-O;Park, Rae-Hong;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.37-45
    • /
    • 2008
  • Quality assessment ai s to evaluate if a distorted image or video has a good quality by measuring the difference between the original and distorted images or videos. In this paper, to assess the visual qualify of a distorted image or video, visual features of the distorted image are compared with those of the original image instead of the direct comparison of the distorted image with the original image. We use edge projections from two images as features, where the edge projection can be easily obtained by projecting edge pixels in an edge map along vertical/horizontal direction. In this paper, edge projections are obtained by using vertical/horizontal directions of gradients as well as the magnitude of each gradient. Experimental results show the effectiveness of the proposed quality assessment through the comparison with conventional quality assessment algorithms such as structural similarity(SSIM), edge peak signal-to-noise ratio(EPSNR), and edge histogram descriptor(EHD) methods.

Human Motion Tracking by Combining View-based and Model-based Methods for Monocular Video Sequences (하나의 비디오 입력을 위한 모습 기반법과 모델 사용법을 혼용한 사람 동작 추적법)

  • Park, Ji-Hun;Park, Sang-Ho;Aggarwal, J.K.
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.657-664
    • /
    • 2003
  • Reliable tracking of moving humans is essential to motion estimation, video surveillance and human-computer interface. This paper presents a new approach to human motion tracking that combines appearance-based and model-based techniques. Monocular color video is processed at both pixel level and object level. At the pixel level, a Gaussian mixture model is used to train and classily individual pixel colors. At the object level, a 3D human body model projected on a 2D image plane is used to fit the image data. Our method does not use inverse kinematics due to the singularity problem. While many others use stochastic sampling for model-based motion tracking, our method is purely dependent on nonlinear programming. We convert the human motion tracking problem into a nonlinear programming problem. A cost function for parameter optimization is used to estimate the degree of the overlapping between the foreground input image silhouette and a projected 3D model body silhouette. The overlapping is computed using computational geometry by converting a set of pixels from the image domain to a polygon in the real projection plane domain. Our method is used to recognize various human motions. Motion tracking results from video sequences are very encouraging.

Adaptive Irregular Binning and Its Application to Video Coding Scheme Using Iterative Decoding (적응 불규칙 양자화와 반복 복호를 이용한 비디오 코딩 방식에의 응용)

  • Choi Kang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.391-399
    • /
    • 2006
  • We propose a novel low complexity video encoder, at the expense of a complex decoder, where video frames are intra-coded periodically and frames in between successive intra-coded frames are coded efficiently using a proposed irregular binning technique. We investigate a method of forming an irregular binning which is capable of quantizing any value effectively with only small number of bins, by exploiting the correlation between successive frames. This correlation is additionally exploited at the decoder, where the quality of reconstructed frames is enhanced gradually by applying POCS(projection on the convex sets). After an image frame is reconstructed with the irregular binning information at the proposed decoder, we can further improve the resulting quality by modifying the reconstructed image with motion-compensated image components from the neighboring frames which are considered to contain image details. In the proposed decoder, several iterations of these modification and re-projection steps can be invoked. Experimental results show that the performance of the proposed coding scheme is comparable to that of H.264/AVC coding in m mode. Since the proposed video coding does not require motion estimation at the encoder, it can be considered as an alternative for some versions of H.264/AVC in applications requiring a simple encoder.

Displacement Measurement of a Floating Structure Model Using a Video Data (동영상을 이용한 부유구조물 모형의 변위 관측)

  • Han, Dong Yeob;Kim, Hyun Woo;Kim, Jae Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.159-164
    • /
    • 2013
  • It is well known that a single moving camera video is capable of extracting the 3-dimensional position of an object. With this in mind, current research performed image-based monitoring to establish a floating structure model using a camcorder system. Following this, the present study extracted frame images from digital camcorder video clips and matched the interest points to obtain relative 3D coordinates for both regular and irregular wave conditions. Then, the researchers evaluated the transformation accuracy of the modified SURF-based matching and image-based displacement estimation of the floating structure model in regular wave condition. For the regular wave condition, the wave generator's setting value was 3.0 sec and the cycle of the image-based displacement result was 2.993 sec. Taking into account mechanical error, these values can be considered as very similar. In terms of visual inspection, the researchers observed the shape of a regular wave in the 3-dimensional and 1-dimensional figures through the projection on X Y Z axis. In conclusion, it was possible to calculate the displacement of a floating structure module in near real-time using an average digital camcorder with 30fps video.

A Study on Fingerprinting Robustness Indicators for Immersive 360-degree Video (실감형 360도 영상 특징점 기술 강인성 지표에 관한 연구)

  • Kim, Youngmo;Park, Byeongchan;Jang, Seyoung;Yoo, Injae;Lee, Jaechung;Kim, Seok-Yoon
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.743-753
    • /
    • 2020
  • In this paper, we propose a set of robustness indicators for immersive 360-degree video. With the full-fledged service of mobile carriers' 5G networks, it is possible to use large-capacity, immersive 360-degree videos at high speed anytime, anywhere. Since it can be illegally distributed in web-hard and torrents through DRM dismantling and various video modifications, however, evaluation indicators that can objectively evaluate the filtering performance for copyright protection are required. In this paper, a robustness indicators is proposed that applies the existing 2D Video robustness indicators and considers the projection method and reproduction method, which are the characteristics of Immersive 360-degree Video. The performance evaluation experiment has been carried out for a sample filtering system and it is verified that an excellent recognition rate of 95% or more has been achieved in about 3 second execution time.

011-line Visual Feedback Control of Industrial Robot Manipulator (산업용 로봇 매니퓰레이터의 오프라인 영상피드백 제어)

  • 신행봉;정동연;김용태;이종두;이강두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.567-572
    • /
    • 2002
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS ). We can save much efforts and time in adjusting robots to newly defined workcells by using Off-Line Programming System. A proposed visual calibration scheme is based on position-based visual feedback. The visual calibration system is composed of a personal computer, an image processing board, a video monitor, and one camera. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

Off-line Visual Feedback Control of Robot Manipulator (로봇 매니퓰레이터의 오프라인 영상피드백 제어)

  • 신행봉;정동연;이종두;이강두;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.140-145
    • /
    • 2001
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS). We can save much efforts and time in adjusting robots to newly defined workcells by using Off-Line Programming System. A proposed visual calibration scheme is based on position-based visual feedback. The visual calibration system is composed of a personal computer, an image processing board, a video monitor, and one camera. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

Development of Chameleonic Multi-Surface Display with Dynamic Projection Mapping (동적 실물영상투사 카멜레온(다변) 멀티 서피스 콘텐츠 연구)

  • Hong, Sung-Dae
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.123-132
    • /
    • 2017
  • The physical display technology is the ultimate display technology that human beings aspire, and the world makes use of laser, plasma and reflector plate. Besides, technology development of binocular stereoscopic display has been actively progressed, but there is a limitation to the intact physical representation such as influence of optical ambient light and brightness. In this paper, the display technology using physical deformation different from the existing optical display is approached as a cultural and emotional perspective. The purpose of this paper is to develop the multivariate display technology that can create 3D realistic stereoscopic images through projecting dynamic images on physically diversified screen by overcoming the limitations of 2D planar digital signage and study how to apply them to video, exhibition and performance.