• Title/Summary/Keyword: Vickers hardness test

Search Result 232, Processing Time 0.025 seconds

Effect of coloring liquids on biaxial flexural strength of monolithic zirconia (착색 용액이 단일 구조 지르코니아의 이축 굴곡 강도에 미치는 영향)

  • Jung, Chaeyul;Kim, Min-Jeong;Kim, Jae-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.190-200
    • /
    • 2021
  • Purpose. The aim of this study was to evaluate biaxial flexural strength and hardness of colored monolithic zirconia after dipping in different time intervals of coloring solution. Materials and Methods. Disk shaped specimens were prepared from monolithic zirconia (Eclipse V2.0, AMS, Gimpo, Korea). Four experimental groups were categorized (n = 12) due to coloring time (PU (0s); ST (8s); OV (1 min); PS (preshade)), to evaluate biaxial flexural strength and Vickers hardness. After fracture, X-ray diffraction analysis was performed using fractured specimens. Results were analyzed with one-way ANOVA test. Results. There was no significant difference between groups in the biaxial flexural strength test. However, in the Vickers hardness test, the group with standard dipping time (ST) showed significantly higher value than the group without dipping in coloring liquid (PU)(P=.038). Also, there was no significant difference in the rest of the groups (P>.05). As a result of X-ray diffraction analysis, specific peaks of tetragonal phase were shown and the volume of monoclinic phase fraction was lower than 25%. Conclusion. Although this study has several limitations, coloring liquids had no significant effect on biaxial flexural strength. Vickers hardness was significantly different between the group to which the coloring liquid was applied and the group to which the coloring solution was not applied, but there was no significant difference between the other groups. Also, the flexural strength of monolithic zirconia corresponds to Class 5 of the minimal flexural strength standard according to the use of dental ceramics.

Characterization of Probe Pin for LED Inspection System (LED 검사장비용 탐침의 특성 규명)

  • Shim, Hee-Soo;Kim, Sun Kyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.647-652
    • /
    • 2015
  • A probe pin is a key component of LED inspection equipment. The probe pin makes contact with the LED electrodes and supplies an electric current. Because the mechanical and electrical homogeneity of the probe surface affects the service life and reliability, its characterization is essential. For this study, the hardness was measured using a micro-Vickers hardness test. Moreover, the thicknesses of the plating at different locations and the elemental compositions were examined using an FE-SEM. The uniformity of the plating was found to be acceptable because palladium was detected consistently throughout the tested domain. In addition, the hardness of the surface was determined to be higher than that of the typical palladium range, which is attributed to the use of undercoated nickel.

Determining Mechanical Properties of ZrO2 Composite Ceramics by Weibull Statistical Analysis (와이블 통계 해석에 의한 ZrO2 복합 세라믹스의 기계적 특성)

  • Kim, Seon Jin;Kim, Dae Sik;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.955-962
    • /
    • 2015
  • The Vickers test can be used for all types of materials, and it has one of the widest scales among hardness tests. The hardness may be considered as a probability variable when evaluating the mechanical properties of materials. In this study, we investigate the statistical properties of the bending strength and Vickers hardness in $ZrO_2$ monolithic and $ZrO_2/SiC$ composites depending on the amount of $TiO_2$ additives. The bending strength and Vickers hardness were found to agree well with the Weibull probability distribution. We evaluate the scale parameter and shape parameter in as-received $ZrO_2$ and $ZrO_2/SiC/TiO_2$ ceramics, as well as their heat treated ceramics. We also evaluate the parameters in accordance with the increase in in the indentation load.

A Study on the Establishment of Shore Hardness Standards (쇼어경도표준의 확립에 관한 연구)

  • Bahng, G.W.;Tak, Nae-Hyung;Bong, Haheon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.3
    • /
    • pp.127-135
    • /
    • 2002
  • Shore hardness test was developed in 1906 to overcome the limit of Brinell hardness test. However, the detailed requirements on the tester was not clearly specified except the scale, i.e., 100 HS for high carbon steel and 10 HS for soft brass. As a result, the shore hardness was used for quite long time without well established standards. For the establishment of hardness standards, standard tester, standard procedure, and standard hardness block must be provided. So far the standard of Shore hardness was maintained by correlating Shore hardness scale to Vickers hardness through converting equation. This is the so called converted Shore hardness and it is not the true Shore hardness standard strictly. In this paper, the possibility of establishing Shore hardness standard based on the Shore standard hardness tester is reported.

Estimation of Mechanical Properties of Sn-xAg-0.5Cu Lead-free Solder by Tensile Test (인장시험을 통한 Sn-xAg-0.5Cu 무연 솔더의 기계적 물성평가)

  • Jeong, Jong-Seol;Shin, Ki-Hoon;Kim, Jong-Hyeong
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.41-45
    • /
    • 2011
  • SnAgCu lead-free solder alloy is considered as the best alternative to eutectic tin-lead solder. However, the detailed material properties of SnAgCu solder are not available in public. Hence, this paper presents an estimation of mechanical properties of SnAgCu lead-free solder. In particular, the weight percent of Ag was varied as 1.0wt%, 2.5wt%, 3.0wt%, and 4.5wt% in order to estimate the effect of Ag in the Sn-xAg-0.5Cu ternary alloy system. For this purpose, four types of SnAgCu bars were first molded by casting and then standard specimens were cut out of molded bars. Micro-Vickers hardness, tensile tests were finally performed to estimate the variations in mechanical properties according to the weight percent of Ag. Test results reveal that the higher the weight percent of Ag is, the higher the hardness, yield strength, and ultimate tensile strength become. More material properties will be further investigated in the future work.

A Study on the Analysis of Plastic Zone in Carbon Steel after Strain Aginig (변형시효처리한 탄소강의 소성역 해석에 관한 연구)

  • 손세원;이진수;장정원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.933-937
    • /
    • 1996
  • In this paper, the behavior of plastic zone in the notch tip was studied under Loye's Micro Vickers Hardness Measurement Method. The direction forming maximum plastic zone was estimated by finite element analysis. In the experiments, cold rolling sheet SGCD3, SK5 and hot rolling sheet SS41, S4SC was used to study the influence of carbon contents on plastic zone. The standard hardness test specimen and the notch hardness test specimen was made and loaded cyclically. The specimen was aged to stabilize the hardness. After aging treatment, the notch specimen was made and simple tension load of 50% yield strength was applied. The hardness test at the notch tip until the hardness data of standard hardness specimen was checked was performed.

  • PDF

Characteristics of tungsten coated graphite using vacuum plasma spraying method

  • Lim, Hyeonmi;Kang, Boram;Kim, Hoseok;Hong, Bong Guen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.200.1-200.1
    • /
    • 2016
  • Tungsten coatings on the graphite (CX-2320) were successfully deposited using the vacuum plasma spraying (VPS) method. An optimum coating procedure was developed and coating thicknesses of $409{\mu}m$ (without an interlayer) and $378{\mu}m$ (with an interlayer) were obtained with no cracks and no signs of delamination. The mechanical characteristics and microstructure of the tungsten coating layers were investigated using a Vickers hardness tester, FE-SEM, EDS, and XRD. The effect of a titanium interlayer on the properties of the tungsten coating was investigated. It was shown that the titanium interlayer prevented the diffusion of carbon to the tungsten layer, thereby suppressing the formation of tungsten carbide. Vickers hardness data yielded values that were 62.5 ~ 80.46% of those for bulk tungsten, indicating that tungsten coatings on graphite can be utilized as a plasma-facing material. High heat flux tests were performed by using thermal plasma with a maximum flux of $10MW/^2$. Vickers hardness after the heat flux test is performed to see a change in the mechanical properties. The formationof a tungsten carbide and the effect of the titanium interlayer for the diffusion barrier are investigated by using energy dispersion spectroscopy (EDS).

  • PDF

Plasma-Sprayed $Al_2O_3-SiO_2$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modulus. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing. These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma-sprayed coatings.

  • PDF

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF