Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 10, pp. 955~962, 2015

<학술논문>

DOI http://dx.doi.org/10.3795/KSME-A.2015.39.10.955

ISSN 1226-4873(Print) 2288-5226(Online)

와이블 통계 해석에 의한 ZrO₂ 복합 세라믹스의 기계적 특성[§]

김선진^{*}·김대식^{**}·남기우^{***†}

* 부경대학교 기계설계공학과, ** 하이에어코리아㈜, *** 부경대학교 재료공학과

Determining Mechanical Properties of ZrO₂ Composite Ceramics by Weibull Statistical Analysis

Seon Jin Kim^{*}, Dae Sik Kim^{**} and Ki Woo Nam^{***†} * Dept. of Mechanical Design Engineering, Pukyong Nat'l Univ. ** TFT, Hi Air Korea, Co., Ltd. *** Dept. of Materials Science and Engineering, Pukyong Nat'l Univ.

(Received March 2, 2015; Revised June 19, 2015; Accepted July 16, 2015)

Key Words: Weibull Statistical Analysis(와이블 통계 해석), Bending Strength(굽힘강도), Vickers Hardness(비커 스경도), ZrO₂ Monolithic Ceramics(ZrO₂ 단상 세라믹스), ZrO₂ Composite Ceramics(ZrO₂ 복합 세라 믹스), TiO₂(이산화티타늄)

초록: 비커스 경도 시험은 모든 재료에 적용할 수 있으며, 경도 시험 중에서 가장 광범위하게 사용된다. 경도는 기계적 성질을 평가하는 하나의 확률변수로 볼 수 있다. 본 연구는 ZrO₂ 단상 세라믹스와 TiO₂ 첨가량에 따르는 ZrO₂/SiC 복합 세라믹스의 굽힘강도와 비커스 경도의 통계적 성질을 조사하였다. 굽힘강도와 비커스 경도는 와이블 확률 분포를 잘 따랐다. 척도 및 형상 파라메터는 ZrO₂ 모재 세라믹스, ZrO₂/SiC/TiO₂ 모재 세라믹스 및 이들을 열처리한 세라믹스를 사용하여 평가하였다. 또한 압입 하중의 증가에 따른 영향도 평가하였다.

Abstract: The Vickers test can be used for all types of materials, and it has one of the widest scales among hardness tests. The hardness may be considered as a probability variable when evaluating the mechanical properties of materials. In this study, we investigate the statistical properties of the bending strength and Vickers hardness in ZrO_2 monolithic and ZrO_2/SiC composites depending on the amount of TiO_2 additives. The bending strength and Vickers hardness were found to agree well with the Weibull probability distribution. We evaluate the scale parameter and shape parameter in as-received ZrO_2 and $ZrO_2/SiC/TiO_2$ ceramics, as well as their heat treated ceramics. We also evaluate the parameters in accordance with the increase in in the indentation load.

1. 서 론

세라믹스는 내열성, 내식성, 내마모성 등 매우 뛰어난 특성을 가지고 있다. 그러나 금속재료에 비하여 파괴인성이 매우 작아 균열 감수성이 높다. 그 때문에 기계가공이 어렵고, 높은 가공 단가임 에도 불구하고 신뢰성이 부족하다. 이런 현상 때 문에 세라믹스에 균열 치유 능력을 부여함으로서, 이 문제를 해결하는 연구가 진행되고 있다. 마찬 가지로 ZrO₂ 세라믹스에도 자기 균열 치유 능력을 부여함으로서, 복잡한 형상의 임플란트, 신뢰성이 필요한 인공뼈 등의 가공 단가를 낮출 수 있는 응 용이 기대된다.

많은 연구자들은 모재의 산화를 이용하여 세라 믹스 균열치유(열처리)에 관한 연구를 실시하고 있으며, 대기 중에서 1273~1573 K의 치유 온도가 필요하다.^(1~7) 한편 ZrO₂/SiC(20 wt.%) 복합 세라믹 스는 873~1073 K의 매우 낮은 저온의 30~100시 간에서 자기 치유 능력이 있다는 것을 보고하였

 ^{\$} 이 논문은 2015년도 대한기계학회 재료 및 파괴부문 춘계학술대회(2015.4.2-3., 서귀포KAL호텔) 발표논문임.
 † Corresponding Author, namkw@pknu.ac.kr
 © 2015 The Korean Society of Mechanical Engineers

ZST4

 $TiO_{2}(1.2)$

ZrO₂(88)

SiC (10.0) TiO₂ (2.0)

다.⁽⁸⁾ 저자들도 ZrO₂ 세라믹스에 SiC(10 wt.%), TiO2 의 첨가에 의하여 균열 치유 능력을 확인 하였으 나.⁽⁹⁾ ZrO₂/SiC의 굽힘 강도는 ZrO₂의 약 50%를 나 타내었다. ZrO2/SiC 복합 세라믹스의 상변태 즉, 정 방정→단사정 변태가 균열 치유 기구라면, 이것은 새로운 균열 치유 메커니즘이고, 다른 재료나 다 른 성분계를 첨가함으로서 균열 치유 능력 및 강 도 향상을 기대할 수 있을 것이다.

인장강도 및 경도 등과 같은 기계적 성질의 평균치나 분산 등 통계적 특성뿐 아니라, 그들의 정량적 확률분포 특성을 파악하고 평가하는 것은 재료의 설계, 제조 및 개발의 기초 데이터로 아주 중요하다. (10)

본 연구에서는 이트리아 안정화 ZrO2 단상 세라 믹스와 ZrO₂/SiC에 TiO₂를 첨가한 세라믹스, 이것 들을 1073 K와 1173 K에서 1, 5 및 10시간 열처리 (균열치유)한 세라믹스를 시험편으로 사용하였다. 이들 시험편은 굽힘 강도 및 비커스 경도를 측정 하고, 신뢰성을 평가하기 위하여 와이블 통계 해 석을 수행하였다.

2. 재료 및 실험 방법

사용한 분말은 Tosoh 사에서 생산한 평균입경 0.026 /m의 지르코니아(ZrO2) TZ-3Y-E(안정화제 Y2O3 3 mol.% 포함)와 ZrO2에 균열 치유특성을 부 여하기 위하여 Wako Pure Chemical Industries 사에 서 생산한 평균입경 0.27 µm의 탄화규소(SiC)를 사 용하였다. TiO2 첨가량에 따르는 ZrO2 의 특성을 평가하기 위하여 평균입경 0.3 µm 분말(아나타제) 을 사용하였다. 분말은 이소프로판올과 Si₃N₄ 볼 (φ5)을 사용하여 24 시간 혼합한 후, 363 K의 로에 서 24 시간 건조하여 용매를 제거하였다. 건조된 분말은 분쇄하고 106 µm 망으로 체질하여 소결에 사용하였다. 이 후, ZrO2 시험편은 Z 라 부르고, ZrO₂/SiC/TiO₂ 시험편은 ZST 라 부른다. Z 와 ZST1~4 시험편의 조성은 Table 1 과 같다.

소결은 고온가압소결 방법으로 진공분위기에서 진행하였으며, 30 MPa의 압력 하에서 1,723 K에서 1 시간 동안 유지시킨 후, 로냉하여 소결체를 얻 었다. 상온의 비커스 경도를 측정하기 위한 시험 편의 열처리는 승온 속도 10 K/min으로, 1,073 K와 1.173 K에서 각각 1, 5 및 10 시간 동안 실시하였 으며, 경도 측정 부분은 경면 연마하였다. 각 시험 편의 소결 및 열처리조건을 Table 1에 나타내었다.

굽힘 강도는 스팬 16 mm, 크로스헤드 속도 0.5 mm/min으로 실온의 3점 굽힘 시험에서 구하였다.

	Batch	Cone	ditions	Relative
Speci.	composition	Hot	Heat	density
	(wt.%)	pressing	treatment	(%)
Ζ	$ZrO_{2}(100)$			100.17
ZST1	ZrO ₂ (89.6) SiC (10.0) TiO ₂ (0.4)		1073 K	98.26
ZST2	ZrO ₂ (89.2) SiC (10.0) TiO ₂ (0.8)	30 MPa, 1723 K, 1 hour	1173 K from 1	98.49
ZST3	ZrO ₂ (88.8) SiC (10.0)	vaccum	to 10 hour	98.45

98.56

in air

Table 1 Batch composition and processing

Fig. 1 Comparison of bending strength between Z and ZST specimens

경도는 비커스 경도기(HV-114, Mitutoyo)를 사용하 여 측정하였다. 모재 및 열처리재는 9.8 N의 압입 하중으로 10초간 측정하였으며, 비교하기 위하여 모재는 98 및 294 N으로도 측정하였다. 와이블 통 계 해석은 각 시험편에서 측정한 20개의 경도 데 이터를 사용하였다.

3. 결과 및 고찰

3.1 굽힘강도의 와이블 통계 해석

Fig. 1은 ZrO2 단상 세라믹스인 Z 모재 시험편과 ZrO₂/SiC에 TiO₂를 소량 첨가한 복합 세라믹스인 ZST 모재 시험편에 대한 굽힘 강도를 나타낸 것이다. 그림에서 Z 모재 시험편의 굽힘 강도는 ZST 모재 시험편보다 높음을 알 수 있으며. ZST4는 ZST1~ZST3보다 약간 더 낮은 것을 알 수 있다. 그러나 굽힘 강도는 일정한 값인 확정치가 아니라 통계적으로 변동하고 있음을 알 수 있다. 이와 같이 변동하는 굽힘 강도 해석의

편의성과 최약링크 가설을 고려하여, 다음과 같은 2-파라메터 와이블 분포를 적용하여 와이블 통계 해석을 실시하였다.⁽¹⁰⁾

$$F(x) = 1 - \exp\left[-\left(\frac{x}{\beta}\right)^{\alpha}\right] \tag{1}$$

여기서 α는 확률변수의 변동성을 의미하는 형상 파라메터(shape paparmeter)로서, 커지면 통계적 분 산이 작아지므로 신뢰성이 높아진다. β 는 63.2% 확률에서 특성수명을 나타내는 척도 파라메터 (scale parameter)이다.

Fig. 2는 Fig. 1의 ZrO₂단상 세라믹스인 Z 모재 시험편과 ZrO₂/SiC에 TiO₂를 소량 첨가한 복합 세 라믹스인 ZST 모재 시험편에 대한 굽힘 강도를 와이블 확률지에 나타낸 것이다. 굽힘 강도는 와 이블 확률분포에 잘 따르고 있음을 알 수 있다. 굽힘 강도에 대한 해석결과를 Table 2에 나타낸다. 표에는 산술통계에 의한 평균, 표준편차(Std) 및 변동계수(COV)도 함께 나타내었다. 이상의 결과에 서, 모재 시험편의 개질을 위하여 ZST들을 제작한 경우 모재 시험편 대비 ZST 시험편들의 척도 파 라메터가 작아졌다. 그리고 형상 파라메터는 Z와

 Table 2 The estimated Weibull parameters of bending strength

Parameter	Shape	Scale	Mean/Std
Specimen	parameter	parameter	COV
7	20.03	1709	1668/94.22
	20.05	1709	0.056
76 T1	50.10	1255	1342/29.53
2311	50.10	1555	0.022
7673	51 49	1260	1256/27.11
2512	51.40	1209	0.022
7672	10.16	1447	1410/81.85
2515	19.10	1447	0.058
7674	10.26	1240	1194/128.3
Z814	10.36	1249	0.107

Fig. 2 Weibull plot of bending strength for Z and ZST specimens

Fig. 3 Weibull plot of Vickers hardness. (a) Z, (b) ZST1, (c) ZST2, (d) ZST3, (e) ZST4

ZST3 모재 시험편이 약 20, ZST1과 ZST2 모재 시 험편이 약 50으로 비슷하게 나타났으나, ZST4 모 재 시험편은 약 10으로 낮게 나타났다. 또한 변동 계수는 형상 파라메터와 비슷한 경향을 나타내었 다. 즉, Z와 ZST3 모재 시험편, ZST1과 ZST2 모재 시험편이 비슷하였으며, ZST4 모재 시험편은 다른 것보다 크게 나타났다.

3.2 비커스 경도의 와이블 통계 해석

Fig. 3(a)~(e)는 압입 하중 9.8 N에서 얻어진 Z 및 ZST1~4 시험편의 비커스 경도를 와이블 확률 지에 나타낸 것이다. 비커스 경도는 비교적 와이 블 분포에 적합한 것으로 판단된다. (a) Z 열처리 시험편의 경도 분포는 Z 모재 시험편보다 모두 높은 확률 분포값을 나타내었고, 1073K 열처리 시 험편이 1173K 시험편보다 높은 확률 분포값을 나 타내었다. (b)~(e) ZST 모재 시험편의 경도 분포는 ZST 열처리 시험편의 확률 분포값이 보다 모두 높게 나타났다. 그리고 1073K 열처리 시험편은 1173K 열처리 시험편보다 높은 확률 분포값을 나 타내었다. 특히 ZST1의 1073K 열처리 시험편은 거의 동일한 확률 분포값을 나타내었고, ZST2의 1173K-1h 시험편은 1073K보다 높은 확률 분포값 을 나타내었다. 한편 큰 균열 및 찢김이 많이 발 생한 ZST4 열처리 시험편은 모재보다 분산이 많 은 확률 분포값을 나타내었다.

Table 3~7에 각각 Z 시험편과 ZST 시험편에 대 하여 추정한 와이블 분포함수의 파라메터 값을 나 타낸다. 또한 Table 3~7에 산술통계에 의한 평균, 표준편차 및 변동계수도 함께 나타내었다.

Fig. 4는 Table 3~7의 형상 파라메터와 척도 파라메터를 그래프로 나타낸 것이다. ZST 모재 시험 편의 형상 파라메터는 TiO₂의 첨가에 의하여 Z

Parameter Specimen	Shape parameter	Scale parameter	Mean/Std COV
As-received	20.56	1149	1121/73.50 0.066
1073K-1h	15.74	1330	1288/102.60 0.080
1073K-5h	25.52	1326	1299/61.98 0.048
1173K-1h	38.72	1200	1184/36.56 0.031
1173K-5h	18.73	1226	1193/74.42 0.062
1173K-10h	24.62	1170	1146/59.47 0.052

Table 3 The estimated Weibull parameters of Z specimen

Parameter Specimen	Shape parameter	Scale parameter	Mean/Std COV
As-received	41.45	1326	1310/36.38 0.028
1073K-1h	31.46	1053	1035/40.31 0.039
1073K-5h	30.17	1060	1042/42.56 0.041
1073K-10h	26.07	1068	1047/49.38 0.047
1173K-1h	12.09	1037	995.5/98.67 0.099
1173K-5h	22.37	689	673.7/38.41 0.057
1173K-10h	23.52	802	784.7/39.34 0.050

Table 4 The estimated Weibull parameters of ZST1 specimen

Table 5 The estimated Weibull parameters of ZST2 specimen

Parameter Specimen	Shape parameter	Scale parameter	Mean/Std COV
As-received	38.95	1182	1166/36.51 0.031
1073K-1h	42.95	867	856/24.56 0.029
1073K-5h	64.04	766	760/15.89 0.021
1073K-10h	30.86	926	910/35.88 0.039
1173K-1h	31.45	973	958/40.62 0.042
1173K-5h	32.81	778	766/27.61 0.036
1173K-10h	24.03	758	741/36.72 0.050

Table 6 The estimated Weibull parameters of ZST3 specimen

Parameter Specimen	Shape parameter	Scale parameter	Mean/Std COV
As-received	63.48	1477	1465/27.26 0.019
1073K-1h	15.89	1394	1350/98.20 0.073
1073K-5h	23.56	1132	1107/57.27 0.052
1073K-10h	20.76	1262	1232/72.95 0.059
1173K-1h	31.69	985	969/36.32 0.037
1173K-5h	42.90	937	925/26.95 0.029
1173K-10h	32.43	875	860/35.01 0.041

		1	1
Parameter Specimen	Shape parameter	Scale parameter	Mean/Std COV
As-received	29.14	1358	1334/53.94 0.040
1073K-1h	9.78	1470	1401/173.5 0.124
1173K-1h	15.08	1096	1060/88.61 0.084

 Table 7 The estimated Weibull parameters of ZST4 specimen

Fig. 4 Shape parameter and scale parameter from Weibull probability of Z and ZST specimens

모재 시험편의 형상 파라메터에 비하여 42~209% 크게 나타났다. 한편 척도 파라메터도 3~29% 크 게 나타났다. 1073 K에서 1 시간 열처리한 시험편 의 경우, ZST 열처리 시험편의 형상 파라메터는 큰 균열 및 찢김이 발생한 ZST4 열처리 시험편를 제외하고는 Z 열처리 시험편보다 1~173% 크게 나타났다. ZST4 열처리 시험편은 38% 작게 나타 났다. 척도 파라메터는 ZST1 열처리 시험편에서 21%, ZST2 열처리 시험편에서 35% 작게 나타났으 나, ZST3 열처리 시험편에서 4.8%, ZST4 열처리 시험편에서 11% 크게 나타났다. 그러나 나머지 열처리 시험편의 경우, ZST 열처리 시험편의 형상 파라메터는 Z 열처리 시험편보다 크거나 작지만, 척도 파라메터는 모두 작게 나타났다. 따라서 형 상 파라메터 및 척도 파라메터 관계에서 열처리에 의하여 기계적 특성의 증가가 가능한 것은 63.2% 의 특성수명이 1394로 가장 크고, 균열 및 찢김의 발생이 없는 ZST3의 1073K-1h이라 판단된다.

Fig. 5는 Table 3~7의 평균 및 표준편차를 나타 낸 것이다. ZST 모재 시험편의 평균 비커스 경도 는 TiO₂ 첨가에 의하여 Z 모재 시험편보다 4~ 30% 높게 나타났다. 그러나 Z 열처리 시험편은 평 균적으로 모재 시험편보다 높게 나타났으나, ZST

Fig. 5 Mean Vickers hardness according to specimen conditions of Z and ZST specimens

Fig. 6 Shapes of cracks and burst after crack healing of ZST4 specimen. (a) 1073 K, 5 h, (b) 1073 K, 10 h

열처리 시험편의 평균 경도는 Z 열처리 시험편보 다 대체로 작게 나타났다. 단, 1073K-1h 에서 열처 리한 ZST3 및 ZST4 시험편은 Z 열처리 시험편보 다 높게 나타났다. ZST 열처리 시험편은 Fig. 6 에 나타내듯이 TiO₂ 첨가에 의하여 큰 균열 또는 찢 김 현상이 나타났다.⁽⁵⁾ 이것은 ZrO₂ 의 정방정→단 사정 변태 및 TiO₂ 첨가에 의한 열팽창 계수의 차 에 의한 것이 원인이라 판단한다. 열처리에 의하 여 큰 균열 및 찢김 등을 고려하면, ZST3 1073K-1h 시험편이 특성 수명을 나타내는 경도의 형상 파라메터가 1394 로 가장 높게 나타나, 가장 우수 한 열처리 능력을 가진다고 판단된다.

3.3 모재 시험편에서 압입 하중에 따른 비커스 경도의 와이블 통계 해석

Fig. 7(a)~(e)는 비커스 압입 하중 9.8, 98.0 및 294.0 N에서 얻어진 Z 및 ZST1~4 모재 시험편의 비커스 경도를 와이블 확률 분포로 나타낸 것이다. (a) Z, ZST1 및 ZST2 모재 시험편의 경도 분포는 압입 하중의 증가에 따라서 경도가 높아지고, 분 산이 적게 나타나는 경향을 나타내었다. 그러나 ZST3 및 ZST4 모재 시험편은 압입 하중이 증가 할수록 경도 확률 분포가 낮아지고, 분산이 크게 되는 경향을 나타내었다. 이것은 TiO₂ 첨가량이 증 가함에 따라서 표면 경도가 높아져, 압입 하중이

Fig. 7 Weibull plot of Vickers hardness according to indentation load of as-received specimens. (a) Z, (b) ZST1, (c) ZST2, (d) ZST3, (e) ZST4

증가함에 따라서 압입에 의한 균열이 발생하여 쉽 게 진전하기 때문이라 판단된다.

Table 8~12는 각각 Z와 ZST 모재 시험편에 대 하여 추정한 와이블 분포함수의 파라메터 값을 나 타낸다. 또한 Table 8~12에 산술통계에 의한 평균, 표준편차 및 변동계수(COV)도 함께 나타내었다.

Fig. 8 은 Table 8~12 의 형상 파라메터와 척도 파라메터를 그래프로 나타낸 것이다. 9.8 N 의 압입 하중에 의한 형상 파라메터 및 척도 파라메터도 Fig. 4 에서 설명하였다. 98 N 의 압입 하중에 의한 ZST 모재 시험편의 형상 파라메터는 큰 균열 및 찢김이 발생한 ZST4 모재 시험편을 제외하고는 Z 모재 시험편보다 60~113% 크게 나타났다. ZST4

Fig. 8 Shape parameter and scale parameter from Weibull probability according to indentation load of asreceived Z and ZST specimens

1			
Parameter Indentation load (N)	Shape parameter	Scale parameter	Mean/Std COV
9.8 N	20.56	1149	1121/73.50 0.066
98.0 N	20.04	1274	1242/75.27 0.061
294.0 N	81.35	1318	1310/22.58 0.017

 Table 8 The estimated Weibull parameters for as-received Z specimen

Fable 12 The estimated	Weibull parameters for as-received
ZST4 specime	n

Parameter Indentation load (N)	Shape parameter	Scale parameter	Mean/Std COV
9.8	29.14	1358	1334/53.94 0.040
98.0	17.40	1266	1348/56.10 0.042
294.0	30.87	1371	1229/84.26 0.069

Fig. 9 Mean Vickers hardness according to indentation load of as-received Z and ZST specimens

의 압입 하중에 의한 ZST 모재 시험편의 형상 파 라메터는 Z 모재 시험편보다 ZST1 모재 시험편에 서 9%, ZST2 모재 시험편에서 9.5% 크게 나타났 지만, ZST3 모재 시험편에서 72%, ZST4 모재 시험 편에서 62% 작게 나타났다. 또한 척도 파라메터 는 ZST3 모재 시험편에서 약 5% 작게 나타났으 나, ZST1 모재 시험편에서 약 3.5%, ZST2 모재 시 험편에서 1.6%, ZST4 모재 시험편에서 4% 높게 나타났다. 이와 같이 압입 하중에 따라서 경도 분 포가 다르게 나타나는 것은 열처리에 의하여 경도 의 향상과 표면에 형성되는 균열 치유 물질인 SiO₂의 영향이라 판단한다.

Fig. 9는 Table 8~12의 평균 경도를 나타내었으 며, 표준편차도 함께 나타내었다. 9.8 N 및 98 N의 압입 하중에 의한 ZST 모재 시험편의 평균 비커 스 경도는 TiO₂ 첨가에 의하여 Z 모재 시험편보다 각각 4~30%, 1.4~13% 높게 나타났다. 그러나 294 N의 경우, TiO₂ 첨가량이 적은 ZST1과 ZST2 모재 시험편은 Z 모재 시험편보다 높게 나타났으 나, TiO₂ 첨가량이 많은 ZST3와 ZST4 모재 시험편 은 Z 모재 시험편보다 낮게 나타났다. 이것은 표 면의 경도에 따라서 다르게 나타났다. 즉, 표면 경

 Table 9 The estimated Weibull parameters for as-received ZST1 specimen

Parameter Indentation load (N)	Shape parameter	Scale parameter	Mean/Std COV
9.8	41.45	1326	1310/36.38 0.028
98.0	42.72	1417	1400/38.94 0.028
294.0	88.96	1364	1356/17.85 0.013

 Table 10 The estimated Weibull parameters for as-received ZST2 specimen

Parameter Indentation load (N)	Shape parameter	Scale parameter	Mean/Std COV
9.8	38.95	1182	1166/36.51 0.031
98.0	32.07	1280	1259/46.54 0.037
294.0	89.10	1339	1331/18.64 0.014

 Table 11 The estimated Weibull parameters for as-received ZST3 specimen

Parameter Indentation load (N)	Shape parameter	Scale parameter	Mean/Std COV
9.8	63.48	1477	1465/27.26 0.019
98.0	32.38	1346	1325/51.21 0.039
294.0	22.83	1249	1221/62.80 0.051

모재 시험편은 13% 작게 나타났다. 척도 파라메 터는 ZST1 모재 시험편에서 21%, ZST3 모재 시험 편에서 5.6% 크게 나타났으나, ZST2 및 ZST4 모 재 시험편은 거의 비슷하게 나타났다. 한편 294 N 도가 낮은 것은 압입 하중에 의하여 측정 깊이가 깊어지면서 경도가 증가하는 경향을 나타내지만, 반면 표면 경도가 높은 것은 내부가 오히려 낮은 경향을 나타내었다. 이것은 표면 경도가 높아지고, 압입 하중이 증가하면서 압입에 의하여 균열이 진 전하여 경도가 낮아지는 것이라고 판단된다.

4. 결 론

ZrO₂ 단상 세라믹스(Z 시험편)와 ZrO₂ 복합 세 라믹스(ZST 시험편)에 대하여 굽힘 강도와 비커스 경도 측정 데이터의 신뢰성을 평가하기 위하여 와 이블 통계 해석을 수행한 결과 다음과 같은 결론 을 얻었다.

(1) 굽힘강도와 비커스 경도는 2-파라메터 와이블 확률 분포를 잘 따르는 것으로 나타났다.

(2) 굽힘강도의 경우, 척도 파라메터는 Z 모재 시험편을 개질한 ZST 모재 시험편이 작게 나타났 다. 형상 파라메터는 Z와 ZST3 모재 시험편이 비 슷하고, ZST1과 ZST2 모재 시험편이 z 모재 시험 편보다 약 2.5 정도 크게 나타났으나, ZST4 모재 시험편은 약 절반으로 작게 나타났다.

(3) 비커스 경도 경우,

- ZST 모재 시험편의 형상 파라메터 및 척도 파 라메터는 TiO₂의 첨가에 의하여 Z 모재 시험편보 다 높게 나타났다.

- 1073 K에서 1시간 열처리한 ZST 열처리 시험 편의 형상 파라메터는 큰 균열 및 찢김이 발생한 ZST4 열처리 시험편를 제외하고는 Z 열처리 시험 편보다 높게 나타났다. 척도 파라메터는 ZST1 및 ZST2 열처리 시험편에서 작게 나타났으나, ZST3 및 ZST4 열처리 시험편에서 높게 나타났다.

- 나머지 열처리한 ZST 열처리 시험편의 형상 파라메터는 Z 열처리 시험편보다 높거나 작지만, 척도 파라메터는 모두 작게 나타났다.

(4) 형상 파라메터 및 척도 파라메터의 관계로 부터 열처리에 의하여 기계적 성질의 증가가 가능 한 것은 ZST3의 1073K-1h이다.

(5) Z 모재 시험편의 경우 압입 하중이 증가하면 척도 파라메터와 형상 파라메터는 증가하는 경향 을 보였으나, ZST 모재 시험편의 경우는 증가 또 는 감소하는 양상을 보였다.

(6) 이상과 같은 와이블 통계의 형상 파라메터 및 척도 파라메터는 모재 및 개질한 시험편의 강 도/경도의 분산 및 수명예측에 활용할 수 있다.

참고문헌 (References)

- Ando, K., Houjyou, K., Chu, M.C., Takeshita, S., Takahashi, K., Sakamoto, S. and Sato, S., 2002, "Crack-Healing Behaviour of Si₃N₄/SiC Ceramics Under Stress and Fatigue Strength at the Temperature of Healing (1000°C)," *Journal of the European Ceramic Society*, Vol.22, No. 8, pp.1339~1346.
- (2) Houjou, K., Ando, K., Chu, M. C., Liu, S.P. and Sato, S., 2004, "Crack-Healing and Oxidation Behavior of Silicon Nitride Ceramics," *Journal of the European Ceramic Society*, Vol. 24, No. 8, pp.2329~2338.
- (3) Takahashi, K., Murase, H., Yoshida, S., Houjou, K., Ando, K. and Saito, S., 2005, "Improvement of Static Fatigue Strength of Si₃N₄/SiC Crack-Healed Under Cyclic Stress," *Journal of the European Ceramic Society*, Vol.25, No. 11, pp.1953~1959.
- (4) Nam, K. W., Kim, M. K., Park, S. W., Ahn, S. H. and Kim, J. S., 2007, "Crack Healing Behavior and Bending Strength of Si₃N₄/SiC Composite Ceramics by SiO₂ Colloidal," *Materials Science and Engineering: A*, Vol. 471, Nos. 1-2, pp. 102~105.
- (5) Kim, H. S., Kim, M. K., Kim, J. W., Ahn, S. H. and Nam, K. W., 2007, "Strength of Crack Healed-Specimen and Elastic Wave Characteristics of Al₂O₃/SiC Composite Ceramics," *Trans. Korean Soc. Mech. Eng. A*, Vol. 31, No. 4, pp. 425~431.
- (6) Nam, K. W., Kim, H. S., Son, C. S., Kim, S. K. and Ahn, S. H., 2007, "Cracked-Healing and Elevated Temperature Bending Strength of Al₂O₃ Composite Ceramics by an amount of Y₂O₃," *Trans. Korean Soc. Mech. Eng. A*, Vol. 31, No. 11, pp. 1108~1114.
- (7) Nam, K. W., Park, S. W., Do, J. Y. and Ahn, S. H., 2008, "Cracked-Healing and Bending Strength of Si₃N₄ Ceramics," *Trans. Korean Soc. Mech. Eng. A*, Vol. 32, No. 11, pp. 957~962.
- (8) Houjou, K., Ando, K., Takahashi, K., 2009, "Crack-Healing Behaviour of Zirconia/SiC Composite Ceramics," *Journal of the Society of Materials Science, Japan*, Vol.58, No.6, pp. 510~515.
- (9) Nam, K. W. and Hwang, J. R., 2012, "The Crack healing behavior of ZrO₂/SiC composite ceramics with TiO₂ additive," *Journal of Mechanical Science and Technology*, Vol. 26, No. 7, pp. 2093~2096.
- (10) Kim, S. J., Kong, Y. S. and Lee, S. Y., 2009, "Weibull Statistical Analysis of Micro-Vickers Hardness Using Monte-Carlo Simulation," *Trans. Korean Soc. Mech. Eng. A*, Vol. 33, No. 4, pp. 346~352.