• Title/Summary/Keyword: Vickers Hardness

검색결과 687건 처리시간 0.027초

Effect of Transition Metal Oxides Addition on Yttria - stabilized Zirconia for improving Physical and Mechanical Properties

  • Park, Jaesung;Lee, Yeongshin
    • 디지털산업정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.25-31
    • /
    • 2016
  • Mechanical properties of Y2O3-containing tetragonal ZrO2 polycrystals(Y-TZP) were investigated. Several additives were used to modify the hardness and fracture toughness of Y-TZP. The effects of these individual additives were discussed and their interactions were also analysed. Each additive, such as CoO, Fe2O3, MnO2 was found to deteriorate the mechanical properties of Y-TZP when it was used singly. But the fracture toughness of Y-TZP was significantly improved when these additives and Al2O3 were added in combination at a certain ratio. The addition of CoO, Fe2O3 and MnO2 into Y-TZP resulted in the more complex behavior of fracture toughness and hardness. The specimen with 1.5 wt%-Fe2O3, 3.0 wt% -Al2O3 and 1.5 wt%-CoO showed the monoclinic to tetragonal phase ratio of 18% and the highest toughness of $10.8MPa{\cdot}m1/2$ with Vickers hardness of 1201 kgf/mm2. However, the toughness decreased as the ratio increased and macrocracks developed beyond the ratio of 25%. Sample No. 16 is improved high Physical and Mechanical Properties.

방전 플라즈마 소결에 의한 Ge2Sb2Te5 스퍼터링 타겟 제조 및 특성 (Synthesis and Properties of a Ge2Sb2Te5 Sputtering for Use as a Target by Spark Plasma Sintering)

  • 방창욱;김기범;이진규
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.137-141
    • /
    • 2014
  • In this study, we report the sintering behavior and properties of a $Ge_2Sb_2Te_5$ alloy powders for use as a sputtering target by spark plasma sintering. The effect of various sintering parameters, such as pressure, temperature and time, on the density and hardness of the target has been investigated in detail. Structural characterization was performed by scanning electron microscopy and X-ray diffraction. Hardness and thermal properties were measured by differential scanning calorimetry and micro-vickers hardness tester. The density and hardness of the sintered $Ge_2Sb_2Te_5$ materials were 5.8976~6.3687 $g/cm^3$ and 32~75 Hv, respectively.

싱글모드 파이버 레이저를 이용한 Cu 와 Ni의 고속도 이종재료 용접부의 기계적 특성 (Mechanical Properties of Cu and Ni Dissimilar Welds by High Welding Speed Using Single-Mode Fiber Laser)

  • 이수진;김종도
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.81-88
    • /
    • 2014
  • As the industrial technology has been developed, a dissimilar welding has been received huge attention in various engineering fields. To understand the mechanical properties and possibility of applications of dissimilar metals joining, the laser welding of Cu and Ni dissimilar metals was studied in this paper. Cu and Ni have differences in materials properties, and Cu and Ni make no intermetallic compounds according to typical binary phase of Cu and Ni system. In this study, lap welds of Cu and Ni dissimilar metals using single-mode fiber laser with high welding speed were tried, and mechanical properties of the welds zone were evaluated using a Vickers hardness test and a tensile shear test. To recognize the relation between hardness and tensile shear load, weld fusion zone of interface weld area were observed. And it was confirmed that the ultra-high welding speed could make good weld beads and higher hardness parts had higher tensile shear load under the all conditions.

칼슘보강음료가 법랑질 재광화 효과에 미치는 영향 (Influence of soft drinks supplemented calcium to enamel remineralization)

  • 김민영;이혜진
    • 한국치위생학회지
    • /
    • 제8권3호
    • /
    • pp.13-22
    • /
    • 2008
  • Objectives: The purpose of this study was to identify the correlation between calcium in soft drinks and enamel remineralization. Method: Six soft drinks were used in this study. These were calcium milk, normal milk, calcium yoghurt, normal yoghurt, calcium orange juice, and orange juice. Enamel specimens which 300- 400Vickers Hardness Number (VHN) were selected. These samples were immersed in each soft drink for 12 hours in an in vitro remineralization model. All specimens were processed for SEM image of the enamel surface. Results were analyzed by SPSS 13.0 package program. Results: Calcium milk was the most influential and normal yoghurt was the least to enamel surface. There was not significant difference according to calcium supplement in milk although the difference of enamel hardness was ${\Delta}f13.4$ in calcium milk, and ${\Delta}f4.7$ in normal milk (P>0.05). Other soft drinks showed a little change about calcium but they were insignificant. Demineralization effect was remarkably observed in calcium yoghurt ($-{\Delta}f269.1$) and this effect was confirmed by SEM images. In conclusion, calcium supplemented soft drinks had little influences to hardness of enamel surface.

  • PDF

기계적 밀링과 플라즈마 활성 소결법에 의한 TiB2 분산 Cu기 복합재료 제조 (Synthesis of TiB2 Dispersed Cu Matrix Composite Material by the Combination of the Mechanical Milling and Plasma Activated Sintering Process)

  • 김경주;이길근;박익민
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.292-297
    • /
    • 2007
  • The present study was focused on the synthesis of a $TiB_2$ dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The $Cu/TiB_2$ mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized $Cu/TiB_2$ mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of $Cu/TiB_2$ composite material sintered at $800^{\circ}C$ showed about 98% of theoretical density. The $Cu-1vol%TiB_2$ composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of $Cu-3vol%TiB_2$ composite material were about 140 Hv and about 45% IACS, respectively.

고분자 복합재료의 기계적 물성에 미치는 질소기압의 영향 (Effect of Nitrogen Gas Pressure on the Mechanical Properties of Polymer Composite Materials)

  • 김부안;황현영;강석준;문창권
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.14-19
    • /
    • 2016
  • This study is about the effect of nitrogen gas pressures during manufacturing process on the mechanical properties of composite materials. $TiO_2$/epoxy resin nanocomposites and carbon fiber reinforced epoxy resin(CFRP) composites were fabricated under various nitrogen gas pressures. Tensile strength test, vicker's hardness test and fracture surface observation were carried out to investigate the effect of nitrogen gas pressure. As a result, the tensile strength of nanocomposite and CFRP composites showed clearly increasing tendency by a change in the nitrogen gas pressure up to 3.0 atm and then the tensile strength decreased a little. However, the vicker's hardness of $TiO_2$/epoxy nanocomposites showed same hardness values regardless of the nitrogen gas pressures.

Evaluation of Embrittlement in Isochronal Aged Fe-Cr Alloys by Magnetic Hysteresis Loop Technique

  • Mohapatra, J.N.;Kamada, Y.;Kikuchi, H.;Kobayashi, S.;Echigoya, J.;Park, D.G.;Cheong, Y.M.
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.173-176
    • /
    • 2011
  • Fe-Cr alloys with different Cr contents were prepared by an arc melting technique. The alloys were isochronally aged in the range from $400^{\circ}C$ to $900^{\circ}C$ with $50^{\circ}C$ steps with a holding time of 100 hours. The ageing produced embrittlement in the alloys due to either the formation of a Cr-rich ${\alpha}'$ phase or a $\sigma$ phase at high temperatures. Magnetic Hysteresis Loop (MHL) and Micro-Vickers hardness were measured at each step to correlate the magnetic and mechanical properties. Coercivity and hardness of the alloys were increased and remanence decreased up to 500-$550^{\circ}C$ due to formation of a Cr-rich ${\alpha}'$ phase. Beyond 500-$550^{\circ}C$ range, the coercivity and hardness decreased and remanence increased due to the coarsening or dissolution of the Cr-rich ${\alpha}'$ phase. In the Fe-48% Cr alloy, formation of the $\sigma$ phase at $700^{\circ}C$ reduced the maximum induction of the alloy significantly.

기후 변화에 따른 자기 애자의 시멘트 경도 변화 (Hardness Profiles of Porcelain Insulators by Climate Changes)

  • 이주현;김홍식;김준동;최인혁
    • 한국전기전자재료학회논문지
    • /
    • 제31권1호
    • /
    • pp.24-28
    • /
    • 2018
  • Insulators used in overhead transmission lines are continuously exposed to a number of mechanical and electrical stresses owing to external environmental factors, resulting in corrosion, reduction in durability, and deterioration. Widely used porcelain insulators are fabricated with cement and porcelain and are especially common in Korea. Changes in the hardness and chemical reactivity of the cement increase the leakage and fault currents and increase the possibility of flashover due to insulation breakdown. Therefore, it is important to evaluate the durability and defects of porcelain insulators. Studies on the reliability of various evaluation methods are needed to prevent accidents by accurately determining the replacement timing and potential defects in porcelain insulators. In this study, the hardness of the cement part of the porcelain insulator was measured using the Vickers hardness test and its composition was analyzed by energy dispersive spectroscopy and X-ray diffraction analysis. The performance of the insulators was compared in two different regions with varying climatic conditions. This study presents an evaluation method of the defects in porcelain insulators by measuring humidity, which can also be used to assess the reliability of the insulators.

공업용 순 알루미늄의 반통로각압출(Half Channel Angular Extrusion) 공정에서의 소성 변형 특성 (Characteristics of Plastic Deformation of Commercially Pure Aluminum in Half Channel Angular Extrusion (HCAE))

  • 김경진;조현덕
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.120-127
    • /
    • 2013
  • A novel severe plastic deformation process named half channel angular extrusion (HCAE) is proposed in order to produce bulk UFG materials. In HCAE process, equal channel angular extrusion (ECAE) and conventional forward extrusion process is integrated to increase the strain per pass and effectiveness of the SPD process. Three-dimensional finite element analysis was carried out to study the deformation behavior of the materials in the HCAE process. HCAE process was performed experimentally on commercially pure aluminum (AA1050) and micro-Vickers hardness test was used to measure the distribution of hardness on the section of normal to the extrusion direction. The results show that HCAE is able to impose more intensive strains per pass and give rise to higher micro-hardness than ECAE.

열처리조건에 따른 AZ61 마그네슘 합금의 미세조직과 감쇠능에 미치는 영향 (Effect of Annealing Conditions on Microstructure and Damping Capacity in AZ61 Magnesium Alloy)

  • 안재현;김권후
    • 열처리공학회지
    • /
    • 제31권2호
    • /
    • pp.56-62
    • /
    • 2018
  • Many researchers have studied on the precipitation control after solution treatment to improve the damping capacity without decreasing the strength. However, studies on the damping capacity and microstructure changes after deformation in the solid solution strengthening alloys were inadequate, such as the Al-Zn series magnesium alloys. Therefore, in order to investigate the effect of annealing condition on microstructure change and damping a capacity of AZ61 magnesium alloy. In this study, it was confirmed that the microstructure changes affect the damping capacity and hardness when annealed AZ61 alloy. AZ61 magnesium alloy was rolled at $400^{\circ}C$ with rolling reduction of 30%. These specimens were annealed at $350^{\circ}C$ to $450^{\circ}C$ for 30-180 minutes. After annealing, microstructure was observed by using optical microscopy, and damping capacity was measured by using internal friction measurement machine. Hardness was measured by Vickers hardness tester under a condition of 0.3 N. In this study, static recrystallization was observed regardless of the annealing conditions. In addition, uniform equiaxed grain structure was developed by annealing treatment. Hardness is decreased with increasing grain size. This is associated with Hall-Petch equation and static recrystallization. In case of damping capacity, bigger grain size show the larger damping capacity.