Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.2.173

Evaluation of Embrittlement in Isochronal Aged Fe-Cr Alloys by Magnetic Hysteresis Loop Technique  

Mohapatra, J.N. (NDE and Science Research Center, Faculty of Engineering, Iwate University)
Kamada, Y. (NDE and Science Research Center, Faculty of Engineering, Iwate University)
Kikuchi, H. (NDE and Science Research Center, Faculty of Engineering, Iwate University)
Kobayashi, S. (NDE and Science Research Center, Faculty of Engineering, Iwate University)
Echigoya, J. (NDE and Science Research Center, Faculty of Engineering, Iwate University)
Park, D.G. (Korea Atomic Energy Research Institute)
Cheong, Y.M. (Korea Atomic Energy Research Institute)
Publication Information
Abstract
Fe-Cr alloys with different Cr contents were prepared by an arc melting technique. The alloys were isochronally aged in the range from $400^{\circ}C$ to $900^{\circ}C$ with $50^{\circ}C$ steps with a holding time of 100 hours. The ageing produced embrittlement in the alloys due to either the formation of a Cr-rich ${\alpha} phase or a $\sigma$ phase at high temperatures. Magnetic Hysteresis Loop (MHL) and Micro-Vickers hardness were measured at each step to correlate the magnetic and mechanical properties. Coercivity and hardness of the alloys were increased and remanence decreased up to 500-$550^{\circ}C$ due to formation of a Cr-rich ${\alpha} phase. Beyond 500-$550^{\circ}C$ range, the coercivity and hardness decreased and remanence increased due to the coarsening or dissolution of the Cr-rich ${\alpha} phase. In the Fe-48% Cr alloy, formation of the $\sigma$ phase at $700^{\circ}C$ reduced the maximum induction of the alloy significantly.
Keywords
Fe-Cr alloys; embrittlement; magnetic hysteresis loop; hardness;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 A. Mitra, J. N. Mohapatra, J. Swaminathan, M. Ghosh, A. K. Panda, and R. N. Ghosh, Scripta Mater. 57, 813 (2007).   DOI   ScienceOn
2 J. N. Mohapatra, A. K. Ray, J. Swaminathan, and A. Mitra, J. Magn. Magn. Mater. 320, 2284 (2008).   DOI   ScienceOn
3 V. Moorthy, B. K. Choudhary, S. Vaidyanathan, T. Jayakumar, K. B. S. Rao, and B. Raj, Int. J. Fatigue 21, 263 (1999).
4 C. C. H. Lo, F. Tang, D. C. Jiles, and S. B. Biner, IEEE Trans. Magn. 35, 3977 (1999).   DOI   ScienceOn
5 J. N. Mohapatra, Y. Kamada, H. Kikuchi, S. Kobayashi, J. Echigoya, D. G. Park, and Y. M. Cheong, J. Phys: Conf. Ser. 266, 012041 (2011).   DOI   ScienceOn
6 S. K. Burke, R. Cywinski, J. R. Davis, and B. D. Rainford, J. Phys. F: Met. Phys. 13, 451 (1983).   DOI   ScienceOn
7 Y. Yustinovshikov, M. Shirobokova, and B. Pushkarev, Acta Mater. 44, 5021 (1996).   DOI   ScienceOn
8 D. A. Terentyev, G. Bony, and L. Malerba, Acta Mater. 56, 3229 (2008).   DOI   ScienceOn
9 G. Bony, D. Terentyev, and L. Malerba, Comput. Mater. Sci. 42, 107 (2008).   DOI   ScienceOn
10 P. J. Grobner, Metall. Trans. 4, 251 (1973).   DOI
11 S. S. Brenner, M. K. Miller, and W. A. Soffa, Scr. Metall. 16, 831 (1982).   DOI   ScienceOn
12 O. Soriano-Vargas, E. O. Avila-Davila, V. M. Lopez-Hirata, N. Cayetano-Castro, and J. L. Gonzalez-Velazquez, Mater. Sci. & Eng. A 527, 2910 (2010).   DOI   ScienceOn
13 J. N. Mohapatra, A. K. Panda, and A. Mitra, J. Phys. D: Appl. Phys. 42, 095006 (2009).   DOI   ScienceOn
14 M. K. Miller, J. M. Hyde, M. G. Hetherington, A. Cerezo, G. D. W. Smith, and C. M. Elliott, Acta Metal. Mater. 43, 3385 (1995).   DOI   ScienceOn
15 A. Blachowski, S. M. Dubiel, J. Zukrowski, J. Cieslak, and B. Sepiol, J. Alloy. Compd. 313, 182 (2000).   DOI   ScienceOn
16 A. M. Babakr, A. Al-Ahmari, K. Al-Jumayiah, and F. Habiby, J. Miner. Mater. Charact. Eng. 7, 127 (2008).