DOI QR코드

DOI QR Code

Evaluation of Embrittlement in Isochronal Aged Fe-Cr Alloys by Magnetic Hysteresis Loop Technique

  • Mohapatra, J.N. (NDE and Science Research Center, Faculty of Engineering, Iwate University) ;
  • Kamada, Y. (NDE and Science Research Center, Faculty of Engineering, Iwate University) ;
  • Kikuchi, H. (NDE and Science Research Center, Faculty of Engineering, Iwate University) ;
  • Kobayashi, S. (NDE and Science Research Center, Faculty of Engineering, Iwate University) ;
  • Echigoya, J. (NDE and Science Research Center, Faculty of Engineering, Iwate University) ;
  • Park, D.G. (Korea Atomic Energy Research Institute) ;
  • Cheong, Y.M. (Korea Atomic Energy Research Institute)
  • Received : 2011.03.25
  • Accepted : 2011.05.27
  • Published : 2011.06.30

Abstract

Fe-Cr alloys with different Cr contents were prepared by an arc melting technique. The alloys were isochronally aged in the range from $400^{\circ}C$ to $900^{\circ}C$ with $50^{\circ}C$ steps with a holding time of 100 hours. The ageing produced embrittlement in the alloys due to either the formation of a Cr-rich ${\alpha}'$ phase or a $\sigma$ phase at high temperatures. Magnetic Hysteresis Loop (MHL) and Micro-Vickers hardness were measured at each step to correlate the magnetic and mechanical properties. Coercivity and hardness of the alloys were increased and remanence decreased up to 500-$550^{\circ}C$ due to formation of a Cr-rich ${\alpha}'$ phase. Beyond 500-$550^{\circ}C$ range, the coercivity and hardness decreased and remanence increased due to the coarsening or dissolution of the Cr-rich ${\alpha}'$ phase. In the Fe-48% Cr alloy, formation of the $\sigma$ phase at $700^{\circ}C$ reduced the maximum induction of the alloy significantly.

Keywords

References

  1. Y. Yustinovshikov, M. Shirobokova, and B. Pushkarev, Acta Mater. 44, 5021 (1996). https://doi.org/10.1016/S1359-6454(96)00088-2
  2. D. A. Terentyev, G. Bony, and L. Malerba, Acta Mater. 56, 3229 (2008). https://doi.org/10.1016/j.actamat.2008.03.004
  3. G. Bony, D. Terentyev, and L. Malerba, Comput. Mater. Sci. 42, 107 (2008). https://doi.org/10.1016/j.commatsci.2007.06.017
  4. P. J. Grobner, Metall. Trans. 4, 251 (1973). https://doi.org/10.1007/BF02649625
  5. S. S. Brenner, M. K. Miller, and W. A. Soffa, Scr. Metall. 16, 831 (1982). https://doi.org/10.1016/0036-9748(82)90239-3
  6. O. Soriano-Vargas, E. O. Avila-Davila, V. M. Lopez-Hirata, N. Cayetano-Castro, and J. L. Gonzalez-Velazquez, Mater. Sci. & Eng. A 527, 2910 (2010). https://doi.org/10.1016/j.msea.2010.01.020
  7. M. K. Miller, J. M. Hyde, M. G. Hetherington, A. Cerezo, G. D. W. Smith, and C. M. Elliott, Acta Metal. Mater. 43, 3385 (1995). https://doi.org/10.1016/0956-7151(95)00040-3
  8. A. Blachowski, S. M. Dubiel, J. Zukrowski, J. Cieslak, and B. Sepiol, J. Alloy. Compd. 313, 182 (2000). https://doi.org/10.1016/S0925-8388(00)01139-7
  9. A. M. Babakr, A. Al-Ahmari, K. Al-Jumayiah, and F. Habiby, J. Miner. Mater. Charact. Eng. 7, 127 (2008).
  10. J. N. Mohapatra, A. K. Panda, and A. Mitra, J. Phys. D: Appl. Phys. 42, 095006 (2009). https://doi.org/10.1088/0022-3727/42/9/095006
  11. A. Mitra, J. N. Mohapatra, J. Swaminathan, M. Ghosh, A. K. Panda, and R. N. Ghosh, Scripta Mater. 57, 813 (2007). https://doi.org/10.1016/j.scriptamat.2007.07.004
  12. J. N. Mohapatra, A. K. Ray, J. Swaminathan, and A. Mitra, J. Magn. Magn. Mater. 320, 2284 (2008). https://doi.org/10.1016/j.jmmm.2008.04.152
  13. V. Moorthy, B. K. Choudhary, S. Vaidyanathan, T. Jayakumar, K. B. S. Rao, and B. Raj, Int. J. Fatigue 21, 263 (1999).
  14. C. C. H. Lo, F. Tang, D. C. Jiles, and S. B. Biner, IEEE Trans. Magn. 35, 3977 (1999). https://doi.org/10.1109/20.800727
  15. J. N. Mohapatra, Y. Kamada, H. Kikuchi, S. Kobayashi, J. Echigoya, D. G. Park, and Y. M. Cheong, J. Phys: Conf. Ser. 266, 012041 (2011). https://doi.org/10.1088/1742-6596/266/1/012041
  16. S. K. Burke, R. Cywinski, J. R. Davis, and B. D. Rainford, J. Phys. F: Met. Phys. 13, 451 (1983). https://doi.org/10.1088/0305-4608/13/2/020

Cited by

  1. Effect of Cr-Rich Phase Precipitation on Magnetic and Mechanical Properties of Fe-20% Cr Alloy vol.47, pp.10, 2011, https://doi.org/10.1109/TMAG.2011.2155047
  2. Induced Magnetic Field Used to Detect the Sigma Phase of a 2205 Duplex Stainless Steel vol.35, pp.2, 2016, https://doi.org/10.1007/s10921-016-0339-7
  3. Classification of Induced Magnetic Field Signals for the Microstructural Characterization of Sigma Phase in Duplex Stainless Steels vol.6, pp.7, 2016, https://doi.org/10.3390/met6070164