• 제목/요약/키워드: Vibration-proof

검색결과 75건 처리시간 0.022초

설계자 전용 HDD 진동/충격해석 프로그램 개발 (Development of HDD Vibration/Shock Simulation Tool for Design Engineers)

  • 김진곤;이재곤
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.46-51
    • /
    • 2009
  • Recently, the shock resistance and dynamic characteristics of hard disk drives have become more important due to their highly increased storage density and miniaturization. In this study, we have developed an ANSYS/Mechanical/LS-DYNA based HDD vibration/shock simulation tool for design engineers. This simulation tool using ANSYS APDL can produce a parametric finite element modeling of HDD automatically and has GUI-based applications using the script program language Tcl/Tk. In the present tool, we adopt the reliable methodology of vibration/shock simulation, which is experimentally verified. It is expected that this simulation tool can make the repetitive computational efforts for the shock-proof design of HDD drastically reduced.

  • PDF

온도변화에 따른 플라스틱의 진동감쇠특성 (Damping Properties of Plastic with Temperature Variation)

  • 신수현;정성수;이용봉;이두희;남효덕
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.213-218
    • /
    • 2005
  • It is well known that the loss factor and Young's modulus are fundamental mechanical properties of materials. Recently, the use of complex plastics is increasing for vibration proof. In this study, we evaluated two mechanical values of polycarbonate and acrylonitrile butadiene styrene by using two different standard test methods of ASTM E 756 and ISO 6721. Because damping properties of material generally depend on temperature, test specimen‘s temperature were controlled in the temperature range between - $10^{\circ}C\;and\;60^{\circ}C$. The results shown that the loss factor of polycarbonate gradually increased as increasing temperature, while the Young's modulus decreased. However, the loss factor and the Young's modulus of acrylonitrile butadiene styrene are varied somewhat at $60^{\circ}C$.

저주파수용 ZnO 압전 마이크로 전원의 설계와 분석 (Design and analysis of ZnO piezoelectric micro power generators with low frequency)

  • 정귀상;윤규형
    • 센서학회지
    • /
    • 제18권5호
    • /
    • pp.372-376
    • /
    • 2009
  • This paper describes the characteristics of piezoelectric micro power generators by the ANSYS FEA(finite element analysis). The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Using the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Moreover, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and investigate the possibility of ZnO micro power generator for ambient vibration applications.

Design and Vibration Analysis of Tri-axis Linear Vibratory MEMS Gyroscope

  • Seok, Seyeong;Moon, Sanghee;Kim, Kanghyun;Kim, Suhyeon;Yang, Seongjin;Lim, Geunbae
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.235-238
    • /
    • 2017
  • In this study, the design of a tri-axis micromachined gyroscope is proposed and the vibration characteristic of the structure is analyzed. Tri-axis vibratory gyroscopes that utilize Coriolis effect are the most commonly used micromachined inertial sensors because of their advantages, such as low cost, small packaging size, and low power consumption. The proposed design is a single structure with four proof masses, which are coupled to their adjacent ones. The coupling springs of the proof masses orthogonally transfer the driving vibrational motion. The resonant frequencies of the gyroscope are analyzed by finite element method (FEM) simulation. The suspension beam spring design of proof masses limits the resonance frequencies of four modes, viz., drive mode, pitch, roll and yaw sensing mode in the range of 110 Hz near 21 kHz, 21173 Hz, 21239 Hz, 21244 Hz, and 21280 Hz, respectively. The unwanted modes are separated from the drive and sense modes by more than 700 Hz. Thereafter the drive and the sense mode vibrations are calculated and simulated to confirm the driving feasibility and estimate the sensitivity of the gyroscope. The cross-axis sensitivities caused by driving motion are 1.5 deg/s for both x- and y-axis, and 0.2 deg/s for z-axis.

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • 한국정밀공학회지
    • /
    • 제10권1호
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

에어컨 실외기의 소음원 규명 및 소음저감 (Source Identification and Reduction of Noise for the Outdoor Unit of Room Air Conditioner)

  • 서상호;임금식;이내영;진심원
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1043-1052
    • /
    • 1998
  • The noise sources in the outdoor unit of RAC are identified by the sound intensity method. The main noise sources are compressor noise and fluid noise which is caused by the fan. heat exchanger and shroud. First. the fluid noise is reduced through the design of new fan and shroud. reduction of the system resistance by rearrangement of heat exchanger. and optimization of the complex parameter between the fan and shroud. Next, in order to reduce the compressor noise, the new shape of compressor mount and sound-proof material was applied. As a result, the overall noise was reduced by 4∼5dB (A).

  • PDF

노트북 컴퓨터의 충격성능 분석 및 대책 (Analysis and Countermeasure for Shock-proof Performance of Laptop Computers)

  • 임경화;윤영한;안채헌;김진규;이승은
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.490-495
    • /
    • 2001
  • This paper deals with an analysis and countermeasure for improving the shock performance of laptop computers. The shock analysis is carried out by using the commercial program of LS-DYNA3D. Also the analysis is verified by the measurements from modal tests and shock tests. The available countermeasures are investigated theoretically and experimentally to find the effective methods of reducing the shock acceleration on hard disk driver during one side fall test. The hard disk drive is the most sensitive part in a laptop computer. This research shows the effects of the spring constant of rubber pad, the reinforcement of mechanical parts and the location of a hard disk driver, on the shock reduction.

  • PDF

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서 (Novel Intensity-Based Fiber Optic Vibration Sensor Using Mass-Spring Structure)

  • 호 일;김현호;최상진;반재경
    • 전자공학회논문지
    • /
    • 제51권6호
    • /
    • pp.78-86
    • /
    • 2014
  • 본 논문에서는 질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서를 제안하고 시뮬레이션과 부분 실험을 통하여 그 실현 가능성을 제시한다. 제안한 광세기 기반 광섬유 진동센서는 네 개의 구불구불하게 휘어지는 스프링과 질량체 안의 사각형 개구면(aperture)으로 구성된 질량-스프링 구조를 가진다. 광시준기(optical collimator)는 질량체 안의 사각형 개구면의 변위에 의해서 변조되는 광을 넓히는 데 이용된다. 제안한 광섬유 진동센서를 광학적인 면과 기계적인 면에서 해석하고 설계한다. 기계적인 부분의 설계는 이론적인 해석, 수학적인 모델링 및 3 차원 유한요소법 시뮬레이션을 이용한다. 기계적인 진동이 가해질 때 개구면의 상대적인 변위관계를 3차원 유한요소법 시뮬레이션을 이용하여 구하고, 개구면의 상대적인 변위에 따른 출력값을 실험을 통하여 측정한다. 이를 이용하여 진동에 따른 출력 특성을 파악한 결과 센서 민감도 $15.731{\mu}W/G$, 감지영역 ${\pm}6.087G$를 얻었다. 그리고 입력광원의 파워가 10 dB까지 변하더라도 참조광을 이용하여 0.75%의 상대오차를 보이는 매우 안정된 출력광 파워를 얻었다. 제안한 광섬유 진동센서는 간단한 구조, 저비용 및 다지점 측정 가능의 특징을 가지면서, MEMS (Micro-Electro-Mechanical System) 기술을 이용하여 소형으로 간편하게 제작할 수 있는 잠재력을 가진다.

Insight into coupled forced vibration method to identify bridge flutter derivatives

  • Xu, Fuyou;Ying, Xuyong;Zhang, Zhe
    • Wind and Structures
    • /
    • 제22권3호
    • /
    • pp.273-290
    • /
    • 2016
  • The flutter derivatives of bridge decks can be efficiently identified using the experimentally and/or numerically coupled forced vibration method. This paper addresses the issue of inherent requirement for adopting different frequencies of three modes in this method. The aerostatic force components and the inertia of force and moment are mathematically proved to exert no influence on identification results if the signal length (t) is integer (n=1,2,3...) times of the least common multiple (T) of three modal periods. It is one important contribution to flutter derivatives identification theory and engineering practice in this study. Therefore, it is unnecessary to worry about the determination accuracy of aerostatic force and inertia of force and moment. The influences of signal length, amplitude, and frequency ratio on flutter derivative are thoroughly investigated using a bridge example. If the signal length t is too short, the extraction results may be completely wrong, and particular attention should be paid to this issue. The signal length t=nT ($n{\geq}5$) is strongly recommended for improving parameter identification accuracy. The proposed viewpoints and conclusions are of great significance for better understanding the essences of flutter derivative identification through coupled forced vibration method.