DOI QR코드

DOI QR Code

Novel Intensity-Based Fiber Optic Vibration Sensor Using Mass-Spring Structure

질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서

  • Yi, Hao (Department of Electrical Engineering, Smart Grid Research Center, Chonbuk National University) ;
  • Kim, Hyeon-Ho (Department of Electrical Engineering, Smart Grid Research Center, Chonbuk National University) ;
  • Choi, Sang-Jin (Department of Electrical Engineering, Smart Grid Research Center, Chonbuk National University) ;
  • Pan, Jae-Kyung (Department of Electrical Engineering, Smart Grid Research Center, Chonbuk National University)
  • 호 일 (전북대학교 전기공학과, 스마트그리드연구센터) ;
  • 김현호 (전북대학교 전기공학과, 스마트그리드연구센터) ;
  • 최상진 (전북대학교 전기공학과, 스마트그리드연구센터) ;
  • 반재경 (전북대학교 전기공학과, 스마트그리드연구센터)
  • Received : 2014.03.10
  • Accepted : 2014.05.28
  • Published : 2014.06.25

Abstract

In this paper, a novel intensity-based fiber optic vibration sensor using a mass-spring structure, which consists of four serpentine flexure springs and a rectangular aperture within a proof mass, is proposed and its feasibility test is given by the simulation and experiment. An optical collimator is used to broaden the beam which is modulated by the displacement of the rectangular aperture within the proof mass. The proposed fiber optic vibration sensor has been analyzed and designed in terms of the optical and mechanical parts. A mechanical structure has been designed using theoretical analysis, mathematical modeling, and 3D FEM (Finite Element Method) simulation. The relative aperture displacement according to the base vibration is given using FEM simulation, while the output beam power according to the relative displacement is measured by experiment. The simulated sensor sensitivity of $15.731{\mu}W/G$ and detection range of ${\pm}6.087G$ are given. By using reference signal, the output signal with 0.75% relative error shows a good stability. The proposed vibration sensor structure has the advantages of a simple structure, low cost, and multi-point sensing characteristic. It also has the potential to be made by MEMS (Micro-Electro-Mechanical System) technology.

본 논문에서는 질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서를 제안하고 시뮬레이션과 부분 실험을 통하여 그 실현 가능성을 제시한다. 제안한 광세기 기반 광섬유 진동센서는 네 개의 구불구불하게 휘어지는 스프링과 질량체 안의 사각형 개구면(aperture)으로 구성된 질량-스프링 구조를 가진다. 광시준기(optical collimator)는 질량체 안의 사각형 개구면의 변위에 의해서 변조되는 광을 넓히는 데 이용된다. 제안한 광섬유 진동센서를 광학적인 면과 기계적인 면에서 해석하고 설계한다. 기계적인 부분의 설계는 이론적인 해석, 수학적인 모델링 및 3 차원 유한요소법 시뮬레이션을 이용한다. 기계적인 진동이 가해질 때 개구면의 상대적인 변위관계를 3차원 유한요소법 시뮬레이션을 이용하여 구하고, 개구면의 상대적인 변위에 따른 출력값을 실험을 통하여 측정한다. 이를 이용하여 진동에 따른 출력 특성을 파악한 결과 센서 민감도 $15.731{\mu}W/G$, 감지영역 ${\pm}6.087G$를 얻었다. 그리고 입력광원의 파워가 10 dB까지 변하더라도 참조광을 이용하여 0.75%의 상대오차를 보이는 매우 안정된 출력광 파워를 얻었다. 제안한 광섬유 진동센서는 간단한 구조, 저비용 및 다지점 측정 가능의 특징을 가지면서, MEMS (Micro-Electro-Mechanical System) 기술을 이용하여 소형으로 간편하게 제작할 수 있는 잠재력을 가진다.

Keywords

References

  1. E. P. Carden and P. Fanning, "Vibration Based Condition Monitoring: A Review," Structural Health Monitoring, Vol. 3, No. 4, pp. 355-377, Dec. 2004. https://doi.org/10.1177/1475921704047500
  2. Y. Cao, X. L. Rong, S. J. Shao, and K. P. He, "Present Situation and Prospects of Vibration Sensors," CDCIEM 2012, Hunan, China, pp. 515-518, Mar. 2012.
  3. S. Saadon and O. Sidek, "A Review of Vibration-Based MEMS Piezoelectric Energy Harvesters," Energy Conversion and Management, Vol. 52, pp. 500-504, Jan. 2011. https://doi.org/10.1016/j.enconman.2010.07.024
  4. S. Marauska, R, Jahns, H. Greve, E. Quandt, R. Knochel and B. Wagner, "MEMS Magnetec Field Sensor Based on Magnetoelectric Composites," Journal of Micromechanics and Microengineering, Vol. 22, No. 6, pp. 65204-65029, June 2012.
  5. T. K. Gangopadhyay, "Prospects for Fibre Bragg Gratings and Fabry-Perot Interferometers in Fibre-Optic Vibration Sensing," Sensors and Actuators A, Vol. 113, pp. 20-38, May 2004. https://doi.org/10.1016/j.sna.2004.01.043
  6. Y. R. Garcia, J. M. Corres and J. Goicoechea, "Vibration Detection Using Optical Fiber Sensors," Journal of Sensors, Vol. 2010, pp. 1-12, July 2010.
  7. A. Wada, S. Tanaka and N. Takahashi, "Optical Fiber Vibration Sensor Using FBG Fabry-Perot Interferomenter with Wavelength Scanning and Fourier Analysis," IEEE Sensors Journal, Vol. 12, No. 1, pp. 225-229, Jan. 2012. https://doi.org/10.1109/JSEN.2011.2141984
  8. Q. P. Liu, X. G. Qiao, J. L. Zhao, Z, A, Jia, H. Gao and M. Shao, "Novel Fiber Bragg Grating Accelerometer Based on Diaphragm," IEEE Sensors Journal, Vol. 12, No. 10, pp. 3000-3004, Oct. 2012. https://doi.org/10.1109/JSEN.2012.2201464
  9. W. K. Mao and J. K. Pan, "A Novel Fiber Bragg Grating Sensing Interrogation Method Using Bidirectional Modulation of a Mach-Zehnder Electro-optical Modulator," The Insitute of Electronics Engineers of Korea, Vol. 47, No. 7, pp. 17-22, July 2010.
  10. G. Perrone and A. Vallan, "A Low-Cost Optical Sensor for Noncontact Vibration Measurements," IEEE Trans. on Ins. and Measurement, Vol. 58, No. 5, pp. 1650-1656, May 2009. https://doi.org/10.1109/TIM.2008.2009144
  11. Y. Alayli, S. Topcu, D. Wang, R. Dib and L. Chassagne, "Applications of A High Accuracy Optical Fiber Displacement Sensor to Vibrometry and Profilometry," Sensors and Actuators A, Vol. 116, pp. 85-90, Oct. 2004. https://doi.org/10.1016/j.sna.2004.03.038
  12. D. J. Inman, Engineering Vibration, Prentice Hall, 2007.
  13. A. P. Pisano and Y. H. Cho, "Mechanical Design Issues in Laterally-Driven Microstructures," Sensors and Actuators A: Physical, Vol. 23, pp. 1060-1064, Apr. 1990. https://doi.org/10.1016/0924-4247(90)87089-2
  14. J. Y. Chen, "Single- and Dual-axis Lateral Capacitive Accelerometers Based on CMOS-MEMS Technology," Master Thesis, University of Oslo, Norway, Apr. 2010.
  15. W. Young and R. Budynas, Roark's Formulas for Stress and Strain, McGraw-Hill, 2002.