• 제목/요약/키워드: Vibration-Assisted Machining

검색결과 17건 처리시간 0.02초

압전구동기를 이용한 정밀 가공용 초음파 진동장치 설계 (Design of Ultrasonic Vibration Device using PZT Actuator for Precision Laser Machining)

  • 김우진;;조성학;박종권;이문구
    • 한국레이저가공학회지
    • /
    • 제14권2호
    • /
    • pp.8-12
    • /
    • 2011
  • As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in micro hole array on the surface of the stent, the problem can be solved. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have an enough aspect ratio to contain the drug or a good surface finish to deliver it to blood vessel tissue. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20kHz and amplitude over 500nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT also is selected to have high actuating force and high speed of motion. The support has symmetrical and rigid characteristics.

  • PDF

초음파 원용 레이저 가공에서 재료의 열적 물성이 표면상태에 미치는 영향에 관한 연구 (Study on the Effect of Thermal Property of Metals in Ultrasonic-Assisted Laser Machining)

  • 이후승;김건우;박종은;양민양;조성학;박종권
    • 대한기계학회논문집A
    • /
    • 제39권8호
    • /
    • pp.759-763
    • /
    • 2015
  • 레이저 가공 공정은 마스크 없이 전극을 가공할 수 있다는 장점 때문에 우수한 공정들 중의 하나로 제안되고 있다. 본 논문에서는, 서로 다른 열적 물성을 가지는 금속들에 레이저 가공을 수행하였다. 이 금속들은 서로 다른 표면형상, 열영향부, 그리고 재융착층을 나타내었고 이는 열전도도, 끓는점, 그리고 열확산계수에 의존하였다. 또한 재융착층을 제거하기 위하여 초음파 원용 레이저 가공을 적용, 높은 열확산계수를 가지는 재료에서 그 초음파 가진에 의한 표면 품질의 향상을 발견하였다.

이중 주파수 지원 절삭으로 가공된 타원형 딤플의 특성 (Characterization of Elliptical Dimple Fabricated with Dual Frequency Vibration Assisted Machining)

  • 박건철;고태조;쿠르니아완 렌디;아리 사우드
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.23-31
    • /
    • 2021
  • Surface texturing is a promising route to reduce the friction forces between two surfaces in sliding contact. To this end, the fabrication of micro dimples is one of the most widely used surface texturing methods. According to published results, textured surfaces with elliptical micro dimples offer the best friction performance. Therefore, we fabricated elliptical micro dimples on carbon steel (SM45C) by using dual frequency vibration assisted machining. High and low frequencies of 16.3 kHz and 230 Hz were applied to the 3D resonant elliptical vibrator. The 3D resonant elliptical vibrator with a triangular cubic boron nitride insert was assembled on a computer numerically controlled turning lathe. Oval micro dimples of various profiles were manufactured on carbon steel. In terms of the profile of the elliptical micro dimples, the experimental results indicated that the average micro dimple width and depth were 112 ㎛ and 7.7 ㎛. These dimensions are closely related to the cutting conditions and can be easily controlled.

진동절삭기 구성을 위한 자기변형 재료의 진동 특성 규명 (Vibrational Characteristics of Magnetostrictive Materials for a Vibration Assisted Cutting Device)

  • 이호철;김기대
    • 한국정밀공학회지
    • /
    • 제29권11호
    • /
    • pp.1214-1220
    • /
    • 2012
  • Vibration assisted cutting (VAC) is one of the promising methods for precision machining, which has been normally equipped with piezoelectric materials. In this paper, a feasibility of applying magnetostrictive materials to VAC as a cutting device instead of piezoelectric materials was studied. For this, the vibrational characteristics of a magnetostrictive material was investigated with respect to a coil design, a preload, and the effects of a biasing and an exciting magnetic fields. The output strain of a magnetostrictive material is restricted due to an increasing inductive impedance as the exciting frequency increases and the heat of coil, etc. Through the experimental results, it was found that the biasing and the exciting magnetic field affected the output performance significantly but not the preload. In conclusion, the magnetostrictive material could be used only in the low frequency range but not a good candidate for high frequency actuating application.

미세표면 평활화를 위한 진동 전기화학 폴리싱 (Vibration Electrochemical Polishing for Localized Surface Leveling)

  • 김욱수;김영빈;박정우
    • 한국정밀공학회지
    • /
    • 제30권2호
    • /
    • pp.148-153
    • /
    • 2013
  • This study demonstrates a novel hybrid surface polishing process combining non-traditional electrochemical polishing(ECP) with external artificial ultrasonic vibration. ECP, typical noncontact surface polishing process, has been used to improve surface quality without leaving any mechanical scratch marks formed by previous mechanical processes, which can polish work material by electrochemical dissolution between two electrodes surfaces. This research suggests vibration electrochemical polishing(VECP) assisted by ultrasonic vibration for enhancing electrochemical reaction and surface quality compared to the conventional ECP. The localized roughness of work material is measured by atomic force microscopy(AFM) for detailed information on surface. Besides roughness, overall surface quality, material removal rate(MRR), and productivity etc. are compared with conventional ECP.

FTS시스템을 이용한 룰외 미세 패턴 가공 (Micro Patterning of Roll using Fast Tool Servo System)

  • 여굉;최수창;이상민;박천홍;이득우
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.22-26
    • /
    • 2011
  • The application of fast tool servo (FTS) for diamond turning has been investigated extensively. This paper focuses on the fabrication of the sinusoidal microstructure on a roller, which generated by a piezoelectric-assisted FTS. The influence of the machining parameters on the microstructure configuration was investigated. The experiment results point out that the configuration of the machined microstructure depends mainly on the spindle speed, the diameter of roller and the driving frequency of FTS. The calculation method of the microstructure dimension was reported. The turning test results show that the diamond tool can be moved up to 1kHz without any reinjected vibration in the machining and the peak-to-valley amplitude of the machined sinusoidal microstructure is about 12<${\mu}m$

하이브리드 연삭시스템 초음파 공구 개발 (Development of Ultrasonic Grinding Wheel for Hybrid Grinding System)

  • 김경태;홍윤혁;박경희;이석우;최헌종;최영재
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1121-1128
    • /
    • 2013
  • Ultrasonic grinding system is that the ultrasonic vibration by ultrasonic actuator is applied on conventional grinding system during grinding process. The Ultrasonic vibration with a frequency of over 20kHz can reduce grinding forces and increase surface quality, material removal rate (MRR) and grinding wheel life. In addition, ultrasonic vibration assisted grinding can be used for the materials that are difficult to cut. In this paper, methodology for ultrasonic tools is studied based on finite element method, and in turn the ultrasonic tools are designed and fabricated. It is found that the ultrasonic tool can vibrate with a frequency of 20kHz and amplitude of $25{\mu}m$. In order to verify the machining performance, the grinding experiment is performed on titanium alloy. By applying ultrasonic vibration, the grinding force and temperature are reduced and MRR is increased compared with the conventional grinding.