• Title/Summary/Keyword: Vibration system

Search Result 7,884, Processing Time 0.041 seconds

Active vibration control of multi-point mounting systems with flexible structures (유연구조물이 있는 다점지지 시스템의 능동진동제어)

  • Oh, Shi-Hwan;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.274-279
    • /
    • 2000
  • Driving of the engine makes unbalance forces which induces vibration to the engine mount system. Active vibration control must be performed to reduce the vibration and the propagation of structure-born sound. In this study, the engine system is modeled as 3-dim. vibration system including flexible structures and an effective active noise control method is proposed. Also, appropriate actuator and sensor locations and types are selected. The miniature of the engine vibration system with multi-input multi-output is built and an active vibration control with multiple filtered-X LMS algorithm is applied to it. The applied control method was effective to reduce the transmitted vibration power through the rubber mount It showed the feasibility of the control of the engine vibration systems with flexible structures.

  • PDF

A Study on Active Vibration Isolation Using Electro-Magnetic Actuator (전자기력을 이용한 능동제진에 관한 연구)

  • 손태규;김규용;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1169-1181
    • /
    • 1994
  • Vibration isolation of mechanical systems, in general, is achieved through passive or active vibration isolators. Passive vibration isolator has an inherenrt performance limitation. Whereas, active vibration isolator provides significantly superior vibration-isolation performance at the cost of energy sources and sensors. Recently, in many cases, such as suspension system, precision machinery ... etc, active isolation system outweighs its limitation. Therefore, many studies, researches, and applications are carried out in this field. In this study, vibration-isolation characteristics of an active vibration control system using electromagnetic force actuator are investigated. Several control algorithms including optimal, feedforward are used for active vibration isolation. From the experimental results of each algorithm, effective control algorithms for this active vibration-isolation system are proposed.

VIBRATION CONTROL OF SYNCHROTRON LIGHT SOURCE BUILDING USING EXPERIMENTAL MODAL ANALYSIS (실험적 모우드 해석을 이용한 방사광 가속기 건물의 진동제어)

  • 박상규;이홍기;권형오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.157-161
    • /
    • 1993
  • Optical devices and electronic equipments used in the laboratory of the synchrotron light source building of the accelerator have stringent vibration limits. In order to control the vibration of the building structure and HVAC systems which are main vibration sources are evaluated using experimental modal analysis. Double anti-vibration system is used for the HVAC system and results show that the double anti-vibration system reduces the vibrations of the building to acceptable levels.

  • PDF

Study on Noise Control for Piping System of BFP in a Power Plant (화력발전소 보일러 급수용 펌프 배관계의 이상소음 저감에 관한 연구)

  • 양경현;조철환;배춘희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.490-494
    • /
    • 2004
  • The purpose of this paper was to identify the mechanism that caused abnormal vibration and noise on the piping system connected to discharge flow of BFP(Boiler Feed water Pump) in a coal fired power plant, and to develop the device that can reduce the level of abnormal vibration and noise. Major results of this project can be summarized as follows: First, we analyzed the acoustic mode for the discharge piping of BFP to trace a path of the noise, and assumed that noise and vibration on the piping system can be related with length of pipe. Second, a minimized model of the piping system was set up to simulate abnormal vibration and noise within the specific range of operating frequencies, and as a result we confirmed that the acoustic mode affected the piping system considerably. Finally the test device which can reduce the level of abnormal noise and vibration was built to verify validity applying for the piping system. Then we concluded that the noise and vibration generated from the piping system was attributed to the acoustic resonance in piping system, and so developed new device which can reduce the level of noise and vibration under 40%. Put Abstract here.

  • PDF

Reduction of Transient Vibration on $H_2$ Piping System for Generator Cooling in a Power Plant (화력발전소 발전기 냉각용 수소배관계 과도진동 개선)

  • Yang, Kyeong-Hyeon;Kim, Sung-Hwi;Cho, Chul-Whan;Bae, Chun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.588-592
    • /
    • 2002
  • There was the transient vibration on $H_2$ piping system for cooling the generator in a power plant. We found it was resulted from resonance between the natural vibration of the piping system and exciting force from the turbine rotor by measurement and simulation test. We verified it would be changed the mode shape of the piping system by several simulation test for the structural modification of the piping system. Therefore we concluded that the change of natural vibration mode depends on deeply changing effective length of pipe and reducing supports.

  • PDF

Investigation on Transient Vibration of Piping System to Heater in a Power Plant (발전소 가열기 급수용 배관계 이상 진동 고찰)

  • 양경현;조철환;배춘희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.975-978
    • /
    • 2004
  • There was transient vibration on the piping system from #4 heater to the deaerator in a power plant. We found it was resulted from resonance between the natural vibration of the piping system and vibration induced by flow of feedwater. We verified it would reduce vibration by increasing stiffness of the piping system. Therefore we concluded that it would be generally better to increase stiffness of the piping system to reduce vibration amplitude of 10Hz low for big sized piping systems.

  • PDF

Countermeasure on High Vibration of Branch Pipe with Pressure Pulsation Transmitted from Main Steam Header (주증기 배관 헤더의 압력맥동에 대한 분기 배관의 고진동 대책)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.988-995
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve, and header generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 700 MW nuclear power plant. The exciting sources and response of the piping system are investigated by using on-site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3 Hz, 4.4 Hz and 6.6 Hz transmitted from main steam balance header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness and damping factor were installed to reduce excessive vibration.

Forced Vibration Analysis for Duffing's Vibration Systems with the Multi-Degree-of-Freedom Systems (다자유도계를 갖는 듀핑 진동계의 강제진동해석)

  • 전진영;박용남;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 2000
  • As ship's propulsion shafting system has been complicated, many linear methods that have been used until now are not sufficient enough to produce proper solutions and these solutions are ofter unreasonable. So we need to solve nonlinear systems, and many methods for solving nonlinear vibration system have been developed. In this study, the propulsion shafting system was modeled with Duffing's nonlinear vibration system and multi-degree-of-freedom, and analyzed by using Quasi-Newton method. And for the purpose of confirming the reliability of the calculating results for nonlinear forced torsional vibration of the propulsion shafting system, the nonlinear calculated results were compared with the linear calculated ones for ship's propulsion shafting system. In the result, for analysis of the forced torsional vibration of the propulsion systems with nonlinear elements, the modified Newton's method is confirmed reasonable.

  • PDF

Vibration Compensation due to Spindle Unbalance using An Electro Magnetic Exciter (전자기 가진기를 이용한 스핀들 불평형 진동 보상)

  • 안재삼;김선민;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.505-509
    • /
    • 2001
  • When the spindle is rotated for machining the workpiece, the vibration is generated due to the spindle unbalance. This vibration affects surface finish, dimensional accuracy, tool life, and spindle bearings. To compensate this effect of the spindle unbalance, the spindle system using an EME(electro magnetic exciter)is proposed in this paper. In the proposed spindle system, the vibration due to the spindle unbalance is monitored using vibration sensors and is compensated by electromagnetic attractive forces generated in the EME which are excited by anti-direction forces corresponded with the measured unbalance. Firstly, the spindle system using an EME and control system are constructed to compensate the effect of spindle unbalance in this paper. And then the system is modeled by bond graph to analyze the system. Finally, a controller for vibration compensation due to spindle unbalance is designed and is implemented in real experimental system. As a result, experimental results show this proposed spindle system is very effective to compensate the spindle unbalance.

  • PDF

Electromagnetic Actuator for Active Vibration Control of Precise System (초정밀 시스템의 능동 진동제어용 전자기 액츄에이터)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Hwang, Don-Ha;Kang, Dong-Sik;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.228-230
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters. and electromagnetic actuators.

  • PDF