• Title/Summary/Keyword: Vibration reducing material

Search Result 61, Processing Time 0.025 seconds

Floor Impact Noise Level for Concrete Slab Integrated with Floor Finishing Layers (콘크리트 슬래브와 바닥 상부구조가 일체된 바닥구조의 바닥충격음)

  • Mun, Dae Ho;Oh, Yang Ki;Jeong, Gab Cheol;Park, Hong Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.130-140
    • /
    • 2016
  • Floating floor is most commonly used at apartment houses in Korea for thermal insulation and reducing impact noise. But it in proven that the floating floor is not effective for reducing the floor impact noise in low frequency range. In most cases, impact sound pressure level under 63 Hz frequency band were actually increased by the resonance of resilient material, lightweight concrete and the finishing mortar installed on it. In this paper, an integrated floor system consist of 70 mm light weight concrete and 40 mm finishing mortar successively installed on the concrete slab was suggested to avoid the resonance. Integrated floor system increases total flexural stiffness and mass per unit area. The natural frequencies of first and second vibration mode were increased and acceleration response and floor impact sound level was decreased in all measurement range.

An Experimental Study for Material Properties of Elastomer Bearing Using Next Genration Helicopter rotor system (차세대 헬리콥터 로터용 탄성체베어링 소재 특성에 관한 실험적 연구)

  • 정정교;김영석;박건록;김두훈;이명규;김덕관
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.325-329
    • /
    • 2003
  • Nowadays many peoples are using helicopter in various fields, not only military use but also common people applications such as air-measurement, photography, transportation of goods and persons, saving life and fire fighting etc. And it will be expected more popular than now. Most important part of helicopter to increasing performance and to reducing noise is rotor hub-system. Hub system consists of rotor-blade and rotor-hub. We participate to develop next-generation rotor hub system with elastomeric bearing, part of rotor hub. In this paper we introduce about the role and shape of elastomeric bearing in next-generation helicopter hub system. Then we study about bearing-material requirements and measuring methods. Finally we represent some experimental results.

  • PDF

Small Energy Generator Using Multilayer Piezoelectric Devices (적층형 압전 소자를 이용한 미소 에너지발생장치)

  • Jeong, Soon-Jong;Kim, Min-Soo;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.261-261
    • /
    • 2007
  • Wearable and ubiquitous micro systems will be greatly growing and their related devices should be self-powered in order to avoid the replacement of finite power sources, for example, by scavenging energy from the environment. With ever reducing power requirements of both analog and digital circuits, power scavenging approaches are becoming increasingly realistic. One approach is to drive an electromechanical converter from ambient motion or vibration. Vibration-driven generators based on electromagnetic, electrostatic and piezoelectric technologies have been demonstrated. Among various generator types proposed so far, piezoelectric generator possesses considerable potential in micro system. To overcome low mechanical-to- electric energy conversion, the piezoelectric device should activate in resonance mode in response to external vibration. Normally, the external vibration excretes at low frequency ranging 0.1 to 200 Hz, whereas the resonant frequencies of the devices are fixed as constant. Therefore, keeping their resonant mode in varying external vibration can be one of important points in enhancing the conversion efficiency. We investigated the possibility of use of multi-bender type piezoelectric devices. To match the external vibration frequency with the device resonant frequency, the various devices with different resonant frequency were chosen. Under an external vibration acceleration of 0.1G at 120 Hz, the device exhibited a peak-to-peak voltage of 2.8 V and a power of 0.5 mw in resonance mode.

  • PDF

The Study on Improvement of Acoustic Performance for Automobile Sound-absorbing Materials Using Hollow Fiber (중공 섬유를 이용한 자동차 흡음재 성능 향상 연구)

  • Lee, Jung-Wook;Lee, Su-Nam;Shim, Jae-Hyun;Jung, Pan-Ki;Lee, Won-Ku;Bang, Byoung-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.850-857
    • /
    • 2011
  • Generally, sound-absorbing materials in vehicles are used for giving the comfort to passengers by reducing noise while driving. Materials of which targets are light weight, high performance, eco friendliness and recycling have been developed recently. In this study, sound-absorbing materials using PET(polyethylene terephthalate) hollow fibers to achieve the light weight and the high sound absorption performance are developed, and then evaluated to meet a requirement for the automotive components. The test results show that the acoustic performances of developed products having new fiber structure are better than those of the conventional product.

The Evaluation of the Hysteretic Behavior of the Viscoelastic Material in the Resonant Test (공진법시험에서 나타난 점탄성재료의 히스테레시스 영향평가)

  • Choi, Hyun;Kim, Doo-Hoon;Lee, Sang-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.596-601
    • /
    • 1998
  • Rubber has been widely used as a good device for reducing the vibration in various fields including the anti seismic device like LRB. The damping characteristic is needed to be mathematically modeled to predict the dynamic behavior of the isolated system. In this paper, The frequency response function was obtained experimentally by the resonant method and simulation was performed with the hysteretic model using the resonant test result. the hysteretic behavior of the rubber can be explained by the change of the static stiffness obtained in the DC by the concept of the transfer function.

  • PDF

An Experimental Study on Automobile Tire Road Noise for Design of Automobile Chassis (자동차 섀시 설계를 위한 자동차 타이어 도로소음에 관한 실험적 연구)

  • Kim, Byoung-sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.375-381
    • /
    • 2005
  • The purpose of this study is to obtain a foundation data for chassis design and road noise reduction of automobiles. Using the combination of the automobile, radial tires and instrumentation equipment, experimental investigation were carried out to examine the characteristics of the structural vibration of tire as the key to obtaining the effective parameters for reducing road noise. From the results of experimental studies it has been confirmed that the existence of important frequency ranges, which were attributable to the suspension and chassis system. The tire, axle and chassis natural frequency of automobile govern the road noise. Results that material property of tire and experimental condition are parameter for shifting of tire natural frequency, which enables a designer of an automobile to foresee the influence of the various design factors on the road noise.

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.

Proposing a dynamic stiffness method for the free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Mohammad Gholami;Mojtaba Gorji Azandariani;Ahmed Najat Ahmed;Hamid Abdolmaleki
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • This paper studies the free vibration behavior of bi-dimensional functionally graded (BFG) nanobeams subjected to arbitrary boundary conditions. According to Eringen's nonlocal theory and Hamilton's principle, the underlying equations of motion have been obtained for BFG nanobeams. Moreover, the variable substitution method is utilized to establish the structure's state-space differential equations, followed by forming the dynamic stiffness matrix based on state-space differential equations. In order to compute the natural frequencies, the current study utilizes the Wittrick-Williams algorithm as a solution technique. Moreover, the nonlinear vibration frequencies calculated by employing the proposed method are compared to the frequencies obtained in previous studies to evaluate the proposed method's performance. Some illustrative numerical examples are also given in order to study the impacts of the nonlocal parameters, material property gradient indices, nanobeam length, and boundary conditions on the BFG nanobeam's frequency. It is found that reducing the nonlocal parameter will usually result in increased vibration frequencies.

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan Baba Akbar
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.105-126
    • /
    • 2016
  • In the present study, modelling and vibration control of axially moving laminated Carbon nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one due to reducing the number of unknowns and governing equations, and significantly, it does not require a shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing Hamilton's principle, the equations of motion are obtained and solved by Hybrid analytical numerical method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine vessels and aircrafts.

Shaking Table Tests of a 1/4-Scaled Steel Frame with Base Isolators (1/4축소 철골구조물을 이용한 건물 기초분리장치의 진동대실험)

  • 송영훈;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.39-48
    • /
    • 1997
  • New form of base isolators made of steel spring coated with both natural and artficial rubber were manufactured and tested for material properties. Shaking table experiments were performed using a model structure attached with the bearings. The model structure used in the test is a 1/4 scaled steel structure, and earthquake records were used to check the lateral and vertical stability and effectiveness of the isolators. According to the results all three types of isolators turned out to be effective in reducing the acceleration induced by the earthquake vibration.

  • PDF