• 제목/요약/키워드: Vibration of Structure

검색결과 4,318건 처리시간 0.027초

Active Vibration Control of Composite Shell Structure using Modal Sensor/Actuator System

  • Kim, Seung-Jo;Hwang, Joon-Seok;Mok, Ji-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.106-117
    • /
    • 2006
  • The active vibration control of composite shell structure has been performed with the optimized sensor/actuator system. For the design of sensor/actuator system, a method based on finite element technique is developed. The nine-node Mindlin shell element has been used for modeling the integrated system of laminated composite shell with PVDF sensor/actuator. The distributed selective modal sensor/actuator system is established to prevent the effect of spillover. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Continuous electrode patterns are discretized according to finite element mesh, and orientation angle is encoded into discrete values using binary string. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator for the first and the second mode vibration control of singly curved cantilevered composite shell structure are designed with the method developed on the finite element method and optimization. For verification, the experimental test of the active vibration control is performed for the composite shell structure. Discrete LQG method is used as a control law.

Using structural intensity approach to characterize vibro-acoustic behavior of the cylindrical shell structure

  • Wang, Yuran;Huang, Rong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.297-319
    • /
    • 2018
  • In this paper, the vibro-acoustic behaviors of vibrational cylindrical shells are investigated by using structural intensity approach. The reducing interior noise method for vibrating cylindrical shells is proposed by altering and redistributing the structural intensity through changing the damping property of the structure. The concept of proposed novel method is based on the properties of structural intensity distribution on cylindrical shells under different load and damping conditions, which can reflects power flow in the structures. In the study, the modal formulas of structural intensity are developed for the steady state vibration of cylindrical shell structures. The detailed formulas of structural intensity are derived by substituting modal quantities, in which the effect of main parameters such as weight coefficients and distribution functions on structure intensity are analyzed and discussed. Numerical simulations are first carried out based on the structural intensity analytical solutions of modal formulas. Through simulating the coupling vibration and acoustical radiation problems of cylindrical shell, the relationship between vibro-acoustic and structural intensity distribution is derived. We find that for cylindrical shell, by properly arranging damping conditions, the structural intensity can be efficiently changed and further the noise property can be improved. The proposed methodology has important implications and potential applications in the vibration and noise control of fuselage structure.

Toggle 시스템을 이용한 구조물의 진동제어 (Vibration Control of Structure Using the Toggle System)

  • 황재승;송진규;강경수;윤태호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.491-498
    • /
    • 2003
  • The purpose of this study is to analyze the geometric nonlinearity of a toggle system and to evaluate the vibration control performance when the toggle system with a viscous damper was applied to a structure. Numerical analysis shows that the relative displacement of the structure can be amplified by amplification mechanism of the toggle system and the capacity of the damper can be reduced without the loss of vibration control performance. It is also observed that the geometric nolinearity of toggle system using the linear viscous damper has little effect on the performance.

  • PDF

구조전달소음 최소화를 위한 함정탑재장비의 베이스 설계 (Design of the Base for the Onboard Installed Equipment to Minimize Structure-borne Noise)

  • 한형석;이경현;박성호
    • 한국소음진동공학회논문집
    • /
    • 제25권6호
    • /
    • pp.432-439
    • /
    • 2015
  • In order to reduce the structure borne noise of the equipment sufficiently, its exciting force should be restricted and additional anti-vibration devices such as resilient mount and bellows should be applied. Since the structure borne noise is dependent on the design of the base for the equipment, it is very important to design the base with low vibration. Therefore, in this research, various types of the base design for the shipboard equipment are investigated to reduce the structure borne noise. In order to design the base with low vibration, the exciting force at the center of the gravity of the equipment is firstly defined through the experiment. Using the exciting force identified by experiments, various types of base designs for the typical turbo machine are evaluated by FEM(finite element method) analysis.

Improving wing aeroelastic characteristics using periodic design

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.353-369
    • /
    • 2017
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness, and inertia forces on a structure. In an aircraft, as the speed of the flow increases, there may be a point at which the structural damping is insufficient to damp out the motion which is increasing due to aerodynamic energy being added to the structure. This vibration can cause structural failure, and therefore considering flutter characteristics is an essential part of designing an aircraft. Scientists and engineers studied flutter and developed theories and mathematical tools to analyze the phenomenon. Strip theory aerodynamics, beam structural models, unsteady lifting surface methods (e.g., Doublet-Lattice) and finite element models expanded analysis capabilities. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. This may reduce the vibration level of the structure, and hence improve its dynamic performance. In this paper, for the first time, we analyze the flutter characteristics of a wing with a periodic change in its sandwich construction. The new technique preserves the external geometry of the wing structure and depends on changing the material of the sandwich core. The periodic analysis and the vibration response characteristics of the model are investigated using a finite element model for the wing. Previous studies investigating the dynamic bending response of a periodic sandwich beam in the absence of flow have shown promising results.

구조물 음향진동 모니터링을 위한 광섬유 센서 설계 (Fiber Optic Sensor Design for the Monitoring of Structural Sound and Vibration)

  • 이종길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.81-84
    • /
    • 2007
  • In this paper, fiber optic sound and vibration monitoring sensor which is latticed shape structure based on Sagnac interferometer is fabricated and tested in laboratory conditions. To detect external vibrations surface mounted fibers on the latticed steel wire fence with a dimension of 170cm by 180cm is used. To detect external sound frequency the tightened fiber optic itself wire netting fence with a dimension of 50cm by 50cm is used. Experiments for the detection of the excited vibration and sound signals were performed. A small vibrator induced external vibration signal and it is applied to the latticed structure in the range of 100Hz to several kHz. External sound signal applied to the fiber optic sensor net using non-directional sound speaker. The detected optical signals were compared and analyzed to the detected both accelerometer and microphone signals in the time and frequency domain. Based on the experimental results, distributed fiber optic sensor using Sagnac interferometer detected effectively external vibration and sound signal and had a good performance. This system can be expanded to the monitoring of a significant system and to the structural health monitoring system.

  • PDF

내부 불평형 기진력을 갖는 원통형 구조물의 능동진동제어 (Active Vibration Control of Shell Structure Subjected to Internal Unbalanced Excitation)

  • 김승기;정우진;배수룡;이상규;곽문규
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.195-203
    • /
    • 2017
  • This paper is concerned with the active vibration control of shell structure that is subjected to internal unbalanced excitation by using active mounts and accelerometers. The unbalanced excitation is caused by a rotating unbalanced mass. The control algorithm considered in this study is the negative acceleration feedback (NAF) control. A simplified dynamic model was derived to verify the effectiveness of the NAF control. Four actuators and four accelerometers were mounted on the shell structure, so that the multiple-input and multiple-output (MIMO) NAF controller was designed by both centralized and decentralized ways. Numerical results show that both the decentralized and centralized NAF controllers are effective. Based on the numerical simulation, the proposed decentralized NAF controller was applied to the real shell structure. Experimental results show that the proposed decentralized NAF controller can effectively suppress vibrations of the shell structure.

유연 구조물의 진동제어를 위한 선형모터댐퍼 (Linear Motor Damper for Vibration Control of Flexible Structure)

  • 강호식;송오섭;김영찬;김두훈;심상덕
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.492-498
    • /
    • 2005
  • A linear motor damper based on the linear motor principle is developed to suppress structural vibration. This paper deals with the design, analysis, and manufacture of the linear motor damper. It is designed to be able to move the auxiliary mass of 1500kg, up to $\pm250mm$ stroke. The control algorithm was designed based on LQG control logic with acceleration feedback. Through performance tests, it was confirmed that the developed hybrid mass damper has reliable feasibility as a control device for structural control. In addition, the linear motor damper is more economical than both hydraulic and electric motor driving mass damper with respect to simple structure and low maintenance cost. A series of performance tests of the linear motor damper system were carried out on the full-scale steel frame structure in UNISON Corporation. Through the performance tests, it was confirmed that acceleration levels are reduced down 10dB for first mode of structure

보강 박스 구조물의 진돔 및 응력 해석 (The Vibration and Stress Analysis of Stiffened Box Structures)

  • 이영신;한재도;한유희;서정
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.147-161
    • /
    • 1996
  • The stress and vibration analysis of stiffened box structure is investigated by experiment and FEM analysis. The effects of stiffener number and box section shape on the structure response are presneted. The 1st natural frequency of stiffened folded byx structure with a stiffeners is 300 Hz. It is highter than that of stiffened rectangular box structure with 5 stiffeners, which is 251 Hz. Maximum deflection of folded box structure with thickness of 1 mm is lower than that of rectangular box structure with thickness of 1 or 2 mm. The natural frequencies of box structures are increeased with the number of stiffener, while the deflections are decreased with the number of box structures. When we compare between fundamental frequency (251 Hz) of stiffened (with 5 stiffeners) and one (137.64 Hz) of unstiffened rectangular box structure under clamped-clamped boundary condition, the ratio of frequency increase is 82%. The stiffened structures of 2 mm thickness can reduced to 120% of maximum deflection of 1 mm thickness rectangular box structures.

  • PDF

열응력을 이용한 보의 강인-최적 진동제어 (Robust-Optimal Vibration Control of a Beam Using Thermal Stress)

  • 권태철;이우식;김진걸
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.232-239
    • /
    • 1993
  • The vibration damping of structure is increased by thermal actuator. The thermal actuator causes thermal stress across the section of structure. The several kinds of control theories are proposed and the proposed control theories are successful in increasing vibration damping. This scheme can be effectively applied to large space structure [LSS] having very low natural frequencies.

  • PDF