• 제목/요약/키워드: Vibration modes

검색결과 1,271건 처리시간 0.03초

디젤기관 추진축계의 연성진동에 관한 연구(제1보:연성이 고유진동수와 그의 모드에 미치는 영향) (A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (1st Report: Effects of Coupling on Natural Frequencies and their Modes))

  • 전효중;이돈출;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.95-106
    • /
    • 2001
  • When the crankshaft of diesel engine has more than 3 throws, which are arranged in a different plane, its vibration induces coupled motions, especially the coupled torsional and axial vibration. Nowadays, the torsional vibration which is influenced rather weak than axial one, can be theoretically calculated fairly accurately, but theoretical calculation results of the axial vibration which is influenced strongly from torsional vibration is not so good. To get accurate calculation results of axial vibration, coupled axial-torsional vibration must be treated. In this investigation, coupled effects of vibration of diesel engine propulsion shafting are analyzed theoretically and some simple calculation methods are also studied. On this first report, effects of coupling on natural frequencies and their modes are mainly studied, setting the each mass in 4 degrees of freedom.

  • PDF

진동모드를 이용한 링 구조물의 결함 탐지 (Fault detections in ring structures using vibration modes)

  • 김석현;장호식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1925-1932
    • /
    • 2000
  • Damage detection methods using vibration modes are investigated on ring structures and. modal behavior of the slightly asymmetric rings is examined. Mode shapes changes, MSER(modal strain energy ratio) and MCR(modal curvature ratio) are applied to identify the locations of faults or damages. Parameters are calculated and compared by finite element analysis on rings with designed local damages. Damages are modeled as reduced stiffness in the analysis. The results show MSER and MCR can be proper factors to detect local damages in ring structures.

  • PDF

고차진동모드의 영향을 고려한 층지진하중 (The Effect of Higher Vibration Modes on the Design Seismic Load)

  • 이동근;신용우
    • 전산구조공학
    • /
    • 제3권4호
    • /
    • pp.123-132
    • /
    • 1990
  • 일반적으로 구조물의 내진설계에 있어서는 등가정적해석법이 주로 사용되고 있다. 현재 사용되고 있는 등가정적해석법은 구조물의 거동이 주로 기본진동 모드에 의해 지배된다는 가정하에 유도되었으므로 기본진동 주기가 긴 구조물에 대해서는 구조물의 동적특성을 정확하게 예측하기가 어렵다. 본 연구에서는 구조물의 설계시 직접적인 영향을 미치게 되는 층전단력의 분포를 주요 관점으로하여 구조물의 동적특성에 미치는 고차모드의 영향을 정확히 고려할 수 있는 층지진하중에 대하여 연구했다. 층지진하중의 분포를 개선하기 위해 현행 내진설계 기준의 등가정적해석법에서 쓰이는 층지진하중과 모드해석을 이용하여 얻은 층지진하중의 차이를 파악하고 이로부터 고차모드의 영향이 고려된 층지진하중의 분포를 제안했다.

  • PDF

진동모타를 적용한 휴대폰 세트의 진동특성 극대화에 관한 연구 (A Study for the Maximization of Vibration Characteristics In the Cellular Phone Set with the Vibration Motor)

  • 김헌정;최창환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.356-361
    • /
    • 2001
  • A research to maximize the force transmitted from a vibration motor at the vibration mode, installed in the cellular phone jig, is presented in this study. When the natural frequencies corresponding to the structural vibration modes of the set exist within the range of the driving frequencies acquired by changing the RPM of the vibration motor, the structural vibration resonance is applicable to maximization of the vibration force sensible to the human body such as hands, arms, and hips. The analytical modal analysis using the Finite Elements and the experimental modal testing for the set jig were performed in order to understand the structural modes and the corresponding frequencies. Then the dynamic responses of the set jig to the given driving frequency were measured and the results on maximizing the vibration were confirmed by the FEM dynamic simulation.

  • PDF

Image Noise Reduction Using Structural Mode Shaping for Scanning Electron Microscopy

  • Hamochi, Mitsuru;Wakui, Shinji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.28-33
    • /
    • 2008
  • In a scanning electron microscope (SEM), outside acoustic noise causes image noise that distorts observations of the specimen being examined. A SEM that is less sensitive to acoustic noise is highly desirable. This paper investigates the image noise problem by addressing the mode shapes of the base plate and the transmission path of the acoustic noise and vibration. By arranging the position of the rib, a new SEM base plate was developed that had twisting as the 1st and 2nd modes. In those two twisting modes, vibration nodes existed near the center of the base plate where the specimen chamber is placed. Less vibration was transmitted to the chamber and to the specimen by the twisting modes compared to bending ones, which are the 2nd and 3rd modes for a rectangular plain base plate. An SEM with the developed base plate installed exhibited a significant reduction of image noise when exposed to acoustic noises below 250 Hz.

승용차 차실모델의 진동 및 소음특성에 관한 연구 (A Study on the vibration and noise characteristics of vehicle compartment model)

  • 김석현
    • 산업기술연구
    • /
    • 제9권
    • /
    • pp.87-99
    • /
    • 1989
  • It is desirable to predict the noise and vibration problems of a passenger car in its design stage for a better ride quality. Dominant frequencies of the noise inside a car range from about 50 Hz to 300 Hz and these are frequently caused by the coupling of the acoustic normal modes of the compartment cavity and structural modes of the body. In this paper, car interior noise problem is investigated in view of vibration-acoustic modes coupling and numerical simulation is performed on the interior noise. In the simulation, experimental modal data of the vehicle structure are utilized to improve the accuracy of the analysis. The results are in good agreement with those of experiment on a half scaled vehicle compartment model. Especially, strongly coupled modes can be predicted, which give useful informations to solve noise problems of real car at design stage.

  • PDF

탄성 축-익 붙임 원판 계의 진동에 있어서 엇각 및 비틀림각의 영향 (Effects of Stagger and Pretwist Angles on the Vibration of Flexible Shaft-Bladed Disk Systems)

  • 전상복;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.101-109
    • /
    • 1997
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the pretwist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and pretwist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF

Modal identifiability of a cable-stayed bridge using proper orthogonal decomposition

  • Li, M.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • 제17권3호
    • /
    • pp.413-429
    • /
    • 2016
  • The recent research on proper orthogonal decomposition (POD) has revealed the linkage between proper orthogonal modes and linear normal modes. This paper presents an investigation into the modal identifiability of an instrumented cable-stayed bridge using an adapted POD technique with a band-pass filtering scheme. The band-pass POD method is applied to the datasets available for this benchmark study, aiming to identify the vibration modes of the bridge and find out the so-called deficient modes which are unidentifiable under normal excitation conditions. It turns out that the second mode of the bridge cannot be stably identified under weak wind conditions and is therefore regarded as a deficient mode. To judge if the deficient mode is due to its low contribution to the structural response under weak wind conditions, modal coordinates are derived for different modes by the band-pass POD technique and an energy participation factor is defined to evaluate the energy participation of each vibration mode under different wind excitation conditions. From the non-blind datasets, it is found that the vibration modes can be reliably identified only when the energy participation factor exceeds a certain threshold value. With the identified threshold value, modal identifiability in use of the blind datasets from the same structure is examined.

육상용 중속 디젤엔진 발전기세트의 진동 특성 및 저감 (Vibration characteristics and reduction of Diesel Power Plant(DPP))

  • 김원현;정건화;이수목;류영석
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.39-40
    • /
    • 2006
  • Diesel power plant(DPP) with the medium speed diesel engine is operated under the very severe condition in aspect of load and operating time as compared with the marine diesel generator set. So, minimized vibration level have to be insured for the more stable operation of engine and generator. The vibration of generator set mainly comes from the resonance between the rigid modes by resilient mount or distortion modes by structural stiffness and the excitation forces of engine. Then, avoidance of resonance with structural modification is generally well known. In this paper, the first order vibration in non-resonance range and local vibration modes were investigated by impact test, response/ODS(operational deflection shape) measurement and 3D finite element analysis for the additional reduction of vibration. The proposed countermeasures were actually applied and their final effects were verified through the in-situ measurement.

  • PDF

An energy-based vibration model for beam bridges with multiple constraints

  • Huang, Shiping;Zhang, Huijian;Chen, Piaohua;Zhu, Yazhi;Zuazua, Enrique
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.41-53
    • /
    • 2022
  • We developed an accurate and simple vibration model to calculate the natural frequencies and their corresponding vibration modes for multi-span beam bridges with non-uniform cross-sections. A closed set of characteristic functions of a single-span beam was used to construct the vibration modes of the multi-span bridges, which were considered single-span beams with multiple constraints. To simplify the boundary conditions, the restraints were converted into spring constraints. Then the functional of the total energy has the same form as the penalty method. Compared to the conventional penalty method, the penalty coefficients in the proposed approach can be calculated directly, which can avoid the iteration process and convergence problem. The natural frequencies and corresponding vibration modes were obtained via the minimum total potential energy principle. By using the symmetry of the eigenfunctions or structure, the matrix size can be further reduced, which increases the computational efficiency of the proposed model. The accuracy and efficiency of the proposed approach were validated by the finite element method.