• 제목/요약/키워드: Vibration intensity

검색결과 476건 처리시간 0.024초

연성보의 진동 인텐시티 측정 (Measurements of Vibration Intensity of a Coupled Beam)

  • 이효행;김창렬;길현권;이용현;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.728-731
    • /
    • 2005
  • The objective of this paper is to perform measurements of vibration intensity of a coupled beam. The propagation of flexural waves generates the out of plane vibration of the coupled beam. The longitudinal waves are generated due to the mode conversion at the structural joint of the coupled beam. The propagation of longitudinal waves generates the in plane vibration of the coupled beam. In order to identify the direction of vibrational power on the coupled beam, the in plane vibration intensity as well as the out of plane vibration intensity needs to be measured. The cross spectral method has been implemented to measure the in-plane vibration intensity as well as out of plane vibration intensity. The results shelved that the experimental method can be effectively used to measure the in-plane vibration intensity as well as the out of plane vibration intensity of coupled beams.

  • PDF

기준 가속도계를 이용한 보의 면내 진동인텐시티 측정 (Measurements of the In-Plane Vibration Intensity of a Beam Using an Reference Accelerometer)

  • 김창렬;길현권;전진숙;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.848-851
    • /
    • 2002
  • In this paper, an experimental method using a reference accelerometer has been developed to measure the in-plane vibration intensity of a beam. It has the advantages of reducing accelerometer phase error comparing with the cross spectral intensity measurement technique using an accelerometer array. It needs no measurement of the input force required in the frequency response method using the only one accelerometer This method has been used to measure the in-plane vibration intensity over the beam. The result has been compared with an input power and the vibration intensity obtained with other methods. It showed that the present experimental method can be effectively used to measure the structural in-plane vibration intensity.

  • PDF

기준 가속도계를 이용한 보의 면내 진동인덴시티 측정 (Measurements of the In-Plane Vibration Intensity of a Beam Using an Reference Accelerometer)

  • Kim, C. R.;H. G. Kil;J. S. Jeon;S. Y. Hong
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.383.2-383
    • /
    • 2002
  • In this paper, an experimental technique using a reference accelerometer has been developed to measure the in-plane vibration intensity of a beam. It has the advantages of shortening measurement time and reducing accelerometer phase error comparing with the cross spectral Intensity measurement technique using an accelerometer array. The distribution of the in-plane vibration Intensity over the beam has been measured. (omitted)

  • PDF

평판의 면내 진동인텐시티 측정 (Measurements of the In-Plane Vibration Intensity of a Plate)

  • 전진숙;길현권;김창렬;이병철;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.816-820
    • /
    • 2003
  • The objective of this paper is to develop an experimental technique to measure the in-plane vibration intensity of a plate. In order to measure the in-plane vibration intensity at a data point, the frequency response functions for the 2 components of an acceleration vector are measured at each point of 4 points in the neighborhood of the data point. This experimental technique has been implemented to measure the in-plane vibration intensity of a plate. The experimental result has been compared with a theoretical result. It showed that the experimental technique can be effectively used to measure the in-plane vibration intensity of plates.

  • PDF

연성평판의 면외 진동인텐시티 측정 (Measurements of the Out-of-Plane Vibration Intensity of Coupled Plate)

  • 전진숙;길현권;이병철;김창열;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.831-835
    • /
    • 2003
  • The objective of this paper is to suggest an experimental technique to measure the out-of-plane vibration intensity of a coupled plate. In order to measure the out-of-plane vibration intensity of the plate, the frequency response technique has been implemented. In this technique, the 2-D intensity vector at a measurement point has been estimate from the frequency response functions measured at 4 points in the neighborhood of the measurement point. The experimental result has been compared with a theoretical result. It showed that the experimental technique can be effectively used to measure the out-of-plane vibration intensity of plates.

  • PDF

진동 인텐시티 해석을 통한 원유운반선의 거주구 횡방향 진동 저감 연구 (Transverse vibration reduction at navigation bridge deck of the shuttle tanker using structural intensity analysis)

  • 김기선;김희원;주원호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.251-255
    • /
    • 2012
  • Structural intensity has been mainly utilized to identify vibration energy flow in a vessel. In this paper, the structural intensity of a shuttle tanker subjected to H-moment of the main engine was calculated using a finite element model. From the analysis, it was found that the top-bracing elements, which support the main engine onto the hull structure to prevent the excessive transverse vibration of the main engine, play the role of the dominant path and sink for vibration energy flow from the main engine. Therefore, the structural intensity was controlled by the modification of stiffness and damping characteristics of the top-bracing elements. As a result, it is observed that the transverse vibration level at the center of navigation bridge deck decreased after the control of structural intensity.

  • PDF

2차원 구조물의 진동 인텐시티 계측에 대한 연구 (A Study on Structural Intensity Measurement of 2-dimensional Structure)

  • 이덕영;박성태
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.477-488
    • /
    • 1997
  • In order to control vibration in structures, it is desirable to be able to identify dominant paths of vibration transmission from sources through the structure to some points of interest. Structural intensity vector(power flow per width of cross section) using cross spectra is able to measure the vibration power flow at a point in a structure. This paper describes the structural intensity measurement of 2-dimensional structure. Structural intensity of 2-dimensional structure can be obtained from eight point cross spectral measurement per axis, or two point measurement per axis on the assumption of far field. Approximate formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained on an infinite plate at the near and far field in flexural vibration. The measurement error of two point measurement is rather bigger than eight point measurement on account of the assumption that Poisson's ratio is 1. The structural intensity vectors on the plate are checked the ability to identify the path of vibration power flow in random excitation and 200Hz sine excitation, the result of two point measurememt is almost the same as the result of eight point measurement in 200Hz sine excitation.

  • PDF

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

진동인텐시티를 이용한 로타리압축기 진동 해석 (Vibration Analysis of Rotary Compressor based on Vibration Intensity)

  • 이장우;김영종;안병하
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.973-978
    • /
    • 2003
  • Vibration and Noise of air conditioner are entirely determined by compressor vibration. Compressor vibration transmitted to the enclosure of air conditioner or Pipes connected compressor with heat exchanger. Enclosure generated noise and vibration. Therefore, the analysis of compressor vibration analysis is considered significant technical issue. For the reduction of vibration of compressor, it is necessary to grasp correctly vibration transmission paths and excitation sources in the compressor shell. Because, shell (Surface of compressor) shows whole vibration characteristic of compressor mechanism. In this paper, vibration intensity was applied to measure vibration energy flow on the shell. From this technique, it is possible to catch the path of vibration propagation along the one cycle and the location of vibration energy sources may change with time on the shell.

  • PDF

반무한보의 면내 진동인텐시티 측정 (Measurements of In-Plane Vibration Intensity of a Semi-Infinite Beam)

  • 김창렬;길현권;전진숙;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1185-1188
    • /
    • 2002
  • The objective of this paper is to apply experimental methods to measure the in-plane vibration intensity of a semi-infinite beam. Two experimental methods have been implemented to measure the in-plane vibration intensity of the beam. The first method is the cross spectral intensity measurement method using two accelerometers. The second method is the frequency response method using the only one acrelerometer. It has the advantages of shortening measurement time and reducing accelerometer phase error. Experimental results showed that those experimental methods can be effectively used to measure the structural In-plane vibration intensity.

  • PDF